
OCCN CHANNELS FOR INTER-MODULE COMMUNICATION – V1.0 23 DECEMBER, 2003

OCCN SOFTWARE LICENSE: GNU GPL PAGE 1 OF 9

OCCN Communication Channels for Inter-Module Communication

Marcello Coppola1, Stephane Curaba1, Miltos Grammatikakis2, Giuseppe Maruccia1and Francesco Papariello1

1ST Microelectronics, AST Grenoble Lab, 12 Jules Horowitz 38019 Grenoble, France
Emails:{marcello.coppola,stephane.curaba,giuseppe.maruccia,francesco.papariello}@st.com
2ISD S.A., K. Varnali 22, 15233 Halandri, Greece, Email: mdgramma@isd.gr

Abstract
The On-Chip Communication Network (OCCN) project provides an efficient, open-
source, GNU-GPL licensed framework, developed within SourceForge for the
specification, modeling, simulation, and design exploration of network on-chip (NoC)
based on an object-oriented C++ library built on top of SystemC. This document mainly
focuses on the implementation, operation and use of point-to-point (StdChannel) and
multi-point (StdBus) channels existing in the OCCN library. In addition, the advanced
user may be able to exploit current OCCN communication channel development
methodology for implementing high-level, specialized on-chip communication protocols,
thus increasing NoC design productivity.

mailto:marcello.coppola, stephane.curaba, giuseppe.maruccia, francesco.papariello}@st.com
mailto:mdgramma@isd.gr

OCCN CHANNELS FOR INTER-MODULE COMMUNICATION – V1.0 23 DECEMBER, 2003

1. OCCN Communication Channels for Inter-Module Communication
Communication channels are responsible for inter-module communication, transferring
both signals and data according to a given communication protocol (called channel
interface). In general, a channel interface may model both direct, point-to-point
communication, as well as multi-access channels, such as crossbar, bus, multistage or
multi-computer network, thus forming a complex network-on-chip.

The OCCN library currently provides only two channel interfaces: the StdChannel that
deals with bi-directional, point-to-point communication, and the StdBus that deal with
traditional, simplified, bus-based communications. For indirect connections among
communication routers, such as those required for implementing crossbars, multistage, or
direct networks, featuring a number of simultaneous connections among communication
nodes, new OCCN models are currently being explored. However, implementation of
simplified OCCN communication channels, provides a general SystemC-based inter-
module communication design methodology that allows the design of other specialized,
user-defined bus channels. For example, Figure 1 illustrates class inheritance for OCCN
classes implementing point-to-point (StdChannel) and multi-point (StdBus) inter-
module communication models. OCCN classes are shown in light yellow, while related
SystemC classes are shown in green.

sc_port<SlaveIf<>>sc_interfacesc_interface
sc_port<MasterIf<>
OCCN SOFTWARE LICENSE: GNU GPL PAGE 2 OF 9

Figure 1. Class inheritance for point-to-point (StdChannel) and multi-point (StdBus) channels in OCCN.

From Figure 1, notice that OCCN channels are defined as template objects of a pair of
• user-defined Pdu classes, such as classes PduO and PduI of StdChannel,
• channel-specific Pdu classes, or
• mixed classes, such as Pdu<StdBusMasterCtrl, Data, Size> and

Pdu<StdBusSlaveCtrl, Data, Size> of StdBus, where only Data and Size
are user-defined.

Thus, in the usual case of Master/Slave communications, each channel can be
parameterized through a set of user-defined or channel-specific signals and data coming
out of the Master (and going to the Slave), and another set of signals and data coming out

PPBaseChannel<PduO,PduI>
(the user-defined Pdus may also contain data)

Msgbox<PduO,PduI>

MasterIf<PduO,PduI> sc_module

MasterPort<PduO,PduI> SlavePort<PduI,PduO>Msgbox<PduI,PduO>

SlaveIf<PduI,PduO>Binding Binding

BusBaseChannel<Pdu<StdBusMasterCtrl,Data,Size>
 Pdu<StdBusSlaveCtrl,Data,Size> >

StdBus<data, size>StdChannel<PduO, PduI>

OCCN CHANNELS FOR INTER-MODULE COMMUNICATION – V1.0 23 DECEMBER, 2003

OCCN SOFTWARE LICENSE: GNU GPL PAGE 3 OF 9

of the Slave (and going to the Master). These signals define the Module interface, and
may include data, address and operation code fields in the Pdu header.

Figure 2. Synchronous inter-module communication using send and receive/reply in OCCN.

Figure 3. Synchronous inter-module communication using asend and receive/reply in OCCN.

Next, we proceed to briefly outline implementation issues, concentrating on the operation
and use of existing OCCN communication channels. Operation of both StdBus, and
StdChannel is based on the send/asend and receive/reply routines implemented
by the module ports. Implementation of these functions is explained, assuming a bi-
directional module A to module B transfer. These transfers are similar to the ones in
StdChannel and StdBus. While in Figure 3, we concentrate on synchronous send
communications, in Figure 4, we concentrate on asynchronous asend communications.

wait_writing_authorization()

write_pdu()
end_of_writing()
wait_sending_completion()

wait_reading_autho
rization()

read_pdu()

end_of_reading()
wait_receiving_com

pletion()

Time
Wake up
Module A

send(PDU<>*p)

Sender
Overhead

Transmission
Delay

Acknowledgment
delay

authorize_writing()
wait(writing_event)

 <transaction managment>
 authorize_reading()
 wait(reading_event)

notify_sending_completion()
notify_receiving_completion()

receive
completed

pdu = receive()

Module A A_Port Bus Module BB_Port

Wake up
Module B

Propagation delay +
Transmission delay +

Receiver overhead

reply()

Time

wait_writing_authorization()

write_pdu()
end_of_writing()

wait_reading_autho
rization()

read_pdu()
 …wait(delay)…
end_of_reading()

Wake up
Module A

asend(PDU<>*p)

Sender
Overhead

Transmission
Delay

authorize_writing()
wait(writing_event)

 <transaction managment>
 authorize_reading()
 wait(reading_event)

receive
completed

pdu = receive()

Module A A_Port Bus Module BB_Port

Wake up
Module B

Propagation + Transmission
delay +

Receiver overhead

reply()

TimeTime

OCCN CHANNELS FOR INTER-MODULE COMMUNICATION – V1.0 23 DECEMBER, 2003

OCCN SOFTWAR

Notice that these figures don’t show implementation of timeout management. Actually,
timeouts are made preemptive by additional testing and implementation of special
cancel_sending functions that directly translate into channel reset management.

In addition to the previously discussed send/asend and receive/reply functions,
backdoor_read(size, addr, buffer) (and write) functions allow access to
any Slave outside of simulation scope, i.e. simulation time is not advanced and the
context is not changed. These functions are useful for loading programs, initializing data,
or for debugging purposes, i.e. setting breakpoints or dumps. However, these functions
implemented with the module(s) must first be binded to the corresponding port, e.g. using
 port->back_door_read_register(&backdoor_read/read, this);
 port->back_door_write_register(&backdoor_write, this);

1.1 The StdChannel for Point-To-Point Inter-Module Communication

Fig

As shown in Fig
in “StdChanne
(A and B). The
structures betwe
Pdus when refe
implemented se
point connectio
(ModA_Port a
are compatible
may be differen
for implementin

Although each
synchronously
operation may b
• Module A

thread std_
StdChanne
StdChanne
A is blocke
internal Std

 Module
 B

Slave
DataOut

Slave
SignalsOut

MasterSignals
Out

MsgBox_A MsgBox_BModule
 A

t

M
o
d
A
_
p
o
r
t

M
o
d
B
_
p
o
r
t

 Channel
Master
DataOu
E LICENSE: GNU GPL PAGE 4 OF 9

ure 4. OCCN point-to-point, inter-module communication using the StdChannel

ure 4, the StdChannel (called “Standard Channel interface”), described
l.h”, implements point-to-point communication between two modules

channel allows for synchronous, bi-directional exchange of two Pdu data
en the two modules. Both Pdu structures (called incoming and outgoing
rring to a single module) contain user-defined control signals and data,
parately and independently for each module. The bi-directional, point-to-
n between each module and the channel is realized using two interfaces
nd ModB_Port) located in the corresponding modules. These interfaces
but not necessarily the same, e.g. signals and data handled by the ports
t. Each interface is attached to a Message Box realizing basic functions
g control and arbitration for general communication protocols.

module may operate on a different clock frequency, all transfers occur
within the clock environment of the StdChannel. Thus, StdChannel
e described as follows
initiates a transfer using a synchronous send. Then, the StdChannel
process_M_to_S transfers the Pdu from Msgbox A (attached to the
l interface connected to module A) to Msgbox B (attached to the
l interface connected to module B). Since send is synchronous, Module

d until module B posts a receive command and a positive edge of the
Channel clock occurs.

OCCN CHANNELS FOR INTER-MODULE COMMUNICATION – V1.0 23 DECEMBER, 2003

OCCN SOFTWARE LICENSE: GNU GPL PAGE 5 OF 9

• Once the Pdu is transferred to Msgbox B, module B is able to receive the incoming
Pdu (control signals and data) by posting a receive. Module B also synchronizes
with its port by issuing a reply.

• Soon afterwards module B prepares its own Pdu (new set of control signals and data),
and initiates a transfer towards module A using a synchronous send. Then, the
StdChannel thread std_process_S_to_M transfers the Pdu from Msgbox B to
Msgbox A. Module B remains blocked until module A posts a receive command
and a positive edge of the internal StdChannel clock is reached.

• Once the Pdu is transferred to Msgbox A, module A is able to receive the incoming Pdu
(control signals and data) by posting a receive. Module A also synchronizes with
its port by issuing a reply and the protocol completes.

Assuming no module delays, e.g. due to delayed send, receive, or reply operation,
clock synchronization, arbitration, or congestion, a complete StdChannel transaction
requires 1 clock cycle in each direction, i.e. two clock cycles for completion of all
StdChannel protocol communications.

1.2 The StdBus for Multi-Point Inter-Module Communications

Figure 5. OCCN multi-point, inter-module communication using the StdBus.

As shown in Figure 5, Standard Bus interface (described in “StdBus.h”) implements
multi-point, bi-directional communication among several Master and Slave modules by
forwarding channel-specific signals and user-defined data (size and type) among
successive pairs of Master/Slave modules. For StdBus, the Master and Slave signals are
not user-defined. While the predefined class StdBusMasterCtrl is used for connecting
any Master module to the StdBus, no control signals are required by the Slave module,
i.e. the corresponding StdBusSlaveCtrl class is empty, and thus only user-defined
data can be transferred from Slave to Master.
class StdBusMasterCtrl {
 public:
 N_uint8 priority;
 N_uint address;
 N_uint8 opcode;
 N_uint be;
};

A Master module always initiates an StdBus transaction by transmitting (via a
synchronous send) control signals and data to a particular Slave. Until the corresponding
Slave module responds to the selected Master, and the Master acknowledges, no other
Master may initiate another StdBus transaction to any Slave. Thus, StdBus channel
implements many-to-many communication, by allowing consecutive locking of channel

SLAVE2

SLAVE1

SLAVE3

MASTER1

MASTER2

MASTER3

StdBus

OCCN CHANNELS FOR INTER-MODULE COMMUNICATION – V1.0 23 DECEMBER, 2003

OCCN SOFTWARE LICENSE: GNU GPL PAGE 6 OF 9

resources by various one-to-one Master/Slave pairs. Each Master/Slave pair operates
based on a simple, high-level, bi-directional, point-to-point inter-module communication
protocol using two StdBus port-internal message boxes, identified as MasterMsgbox
and SlaveMsgBox. These ensure the required synchronization between the bus process
and the Master and Slave processes.

Although all modules operate on their own clock, StdBus transactions occur
synchronously within the clock environment of the channel. StdBus operation and
arbitration principles are described as follows.
• Each Master module may initiate a synchronous send transaction request to a

specific Slave module by appropriately defining and initializing the corresponding
user-defined data field, and the following StdBus-specific control fields in the
Master Pdu:
� opcode, as either OCCN_write or OCCN_read,
� address mapped to the address space of a given Slave; the address space for

each Slave is defined at construction time using the port function
set_slave_address_range (see the example provided later),

� packet priority, and
� byte enable defining which bytes within a packet are significant.

• StdBus arbitration, implemented as a thread within the StdBus channel process,
selects a Master with a pending OCCN_write or OCCN_read request in a non-
preemptive way. Selection is based on Master Pdu priority, and for equal
priority, it is based on a simple round-robin order. At this point, StdBus is locked
and all other Master requests become blocked until the selected communication
transaction completes.

• After StdBus channel arbitration, the selected Master request becomes blocked, and
its transaction fields (control signals and data) are saved to MasterMsgbox (attached
to the StdChannel interface connected to Master modules).

• At the positive edge of the clock that the corresponding Slave is able to receive,
information is transferred from MasterMsgbox to SlaveMsgBox (attached to the
StdBus interface connected to Slave modules). After this operation, the StdBus
thread is blocked until the Slave module posts a receive, in order to obtain the
Master Pdu.

• Once the Slave module is able to obtain the Master Pdu using receive, it also
synchronizes with the port by posting a reply.

• If the opcode is OCCN_write, then the corresponding Master module is ready to
become unblocked when a positive edge of the internal StdBus clock occurs.

• If the opcode is OCCN_read, then additionally the following communication pattern
is realized.
� At first, after sending the acknowledgment, the Slave module prepares and

transmits a Slave Pdu containing no control signals but only user-defined data
(size and type) using asend. Notice that the Slave Pdu may contain different data,
i.e. type and size, than the Master Pdu (either could be empty). Since
asynchronous communication is used, the Slave module becomes unblocked when
the channel, i.e. through SlaveMsgBox, obtains the data.

� Then, the StdBus channel process transfers information from the SlaveMsgBox
to the MasterMsgBox.

OCCN CHANNELS FOR INTER-MODULE COMMUNICATION – V1.0 23 DECEMBER, 2003

OCCN SOFTWARE LICENSE: GNU GPL PAGE 7 OF 9

� Finally, the Master module is able to obtain the Slave Pdu from MasterMsgBox
using receive. It also synchronizes with its StdBus port by posting a reply
operation.

We include in Figure 6, as a useful reference for new channel implementations the main
StdBus thread called stdbus_process.
 template <class Data, int Size>
 void StdBus<Data,Size>::stdbus_process() { // StdBus process
 N_int id_initiator = -1
 N_int id_target = -1;

 // enable read/write events for Masters
 for (N_uint i=0; i<masters.get_length(); i++) {
 masters[i]->enable_writing_event();
 masters[i]->enable_reading_event(); }

 // initialization: enable read/write events for Slaves
 for (N_uint i=0; i<slaves.get_length(); i++) {
 slaves[i]->enable_writing_event();
 slaves[i]->enable_reading_event(); }

 do { // infinite thread

 // arbitration: get next request by priority or round-robin
 // if no request exists, then wait for next Master write event
 id_initiator = get_next_request_initiator_id();
 if (id_initiator == -1) {
 wait(*masters_write_ev);
 id_initiator=get_next_request_initiator_id(); }

 // obtain Slave id for the selected Master's address
 id_target = get_slave_id_according_address
 (occn_hdr(*(masters[id_initiator]->get_write_pdu_ptr()), address));

 // wait until corresponding Slave is ready to receive
 if (!slaves[id_target]->is_reading_completed())
 wait(*slaves_read_ev);

 // Master Pdu is transferred to Slave Message Box
 swap_master_pdu(id_initiator,id_target);

 // Master may initiate new transaction, Slave may read Pdu
 masters[id_initiator]->authorize_writing();
 slaves[id_target]->authorize_reading();

 // synchronize between master and slave at end of Pdu reception
 wait(*slaves_read_ev);
 wait(clk.posedge_event());
 masters[id_initiator]->notify_sending_completion();
 slaves[id_target]->notify_receiving_completion();

 //if opcode is READ, then wait until asend is posted from Slave
 // and receive from Master
 if (occn_hdr(*(slaves[id_target]->get_read_pdu_ptr()),opcode)
 == OCCN_READ) {
 // wait until Slave transfers Pdu to Slave Message Box
 if (!slaves[id_target]->is_writing_completed())
 wait(*slaves_write_ev);

OCCN CHANNELS FOR INTER-MODULE COMMUNICATION – V1.0 23 DECEMBER, 2003

OCCN SOFTWARE LICENSE: GNU GPL PAGE 8 OF 9

 // wait until Master is ready to read
 if (!masters[id_initiator]->is_reading_completed())
 wait(*masters_read_ev);

 // Transfer Pdu to Master Message Box
 swap_slave_pdu(id_initiator, id_target);

 // Slave may initiate new send (not really happening in StdBus)
 // Master may now read the Pdu
 slaves[id_target]->authorize_writing();
 masters[id_initiator]->authorize_reading();

 // Master may re-initiate a transaction, only after it has
 // read the Pdu, and positive edge of clock is reached
 wait(*masters_read_ev);
 wait(clk.posedge_event());
 masters[id_initiator]->notify_receiving_completion(); }
 } while(1);
 }

Figure 6. Thread controlling StdBus channel.

In Figure 7, we connect two Master and two Slave modules through StdBus. For Slave
modules, the function set_target_address_range provides the starting and end
addresses that refer to the mapping of global addresses in the StdBus domain to a
specific Slave module. Notice that no address range overlapping is allowed. Thus, a
target may access a Slave module only if the address belongs to this address range. The
channel process is able to access the user-defined mapping from an address to a Slave by
calling the function get_slave_id_according_address(addr).

 int main () {

 sc_clock clk(“main_clk”, 10, SC_NS); // Clock declaration

 StdBus<N_uint32, 1> my_StdBus("StdBus"); // StdBus

 // module instantiations
 ModuleMaster master1("MASTER1");
 ModuleMaster master2("MASTER2");
 ModuleSlave slave1("SLAVE1");
 ModuleSlave slave1("SLAVE1");

 // StdBus bindings
 master1.port(my_StdBus);
 master2.port(my_StdBus);
 slave1.port(my_StdBus);
 slave2.port(my_StdBus);

 // Clock bindings
 my_StdBus.clk(clk);

 // Slave address maps
 slave1.port->set_target_address_range(0x0000, 0x3FFF);
 slave2.port->set_target_address_range(0x4000, 0x7FFF);

 // start simulation
 sc_start(-1);
 }

OCCN CHANNELS FOR INTER-MODULE COMMUNICATION – V1.0 23 DECEMBER, 2003

OCCN SOFTWARE LICENSE: GNU GPL PAGE 9 OF 9

Figure 7. Modules connected to StdBus in main.cc.

Finally, in Figure 7, we outline the basic user-defined StdBus communication protocol,
for modules A and B, as explained before.

Pdu<MyHeader,int> p;
Pdu<int> ret_p;
p = 0xAABBCCDD; // write operation
occn_hdr(p,priority) = HIGH;
occn_hdr(p,address) = 0x100;
occn_hdr(p,opcode) = OCCN_WRITE;
port.send(p);
// read from same address
occn_hdr(p,opcode) = OCCN_READ;
port.send(p);
ret_p = *port.receive();
if (p != ret_p)
 cerr << ‘Data sent != received’;
 port.reply(); }

Pdu<MyHeader,int> p;
Pdu<int> ret_p;
p = *port.receive();
if(occn_hdr(p,opcode)==
 OCCN_WRITE){
 Mem(occn_hdr(p,address) = p;
 port.reply(); }
else if(occn_hdr(p,opcode)==
 OCCN_READ){
 ret_p = Mem[occn_hdr(p,address)];
 port.reply(1);
 port.asend(ret_p);
}

Figure 8. Initial initiator (Module A) and target (Module B) processes connected to StdBus.

	OCCN Communication Channels for Inter-Module Communication
	1. OCCN Communication Channels for Inter-Module Communication
	1.1 The StdChannel for Point-To-Point Inter-Module Communication
	1.2 The StdBus for Multi-Point Inter-Module Communications

