OCCN: A Network-On-Chip
Modeling and Simulation
Framework

M.Coppola, S.Curaba, M.Grammatikakis,
R.Locatelli, G.Maruccia, F.Papariello, L.Pieralisi

DA em {rntegrated Systems Development
- J

Introduction

SoC trends

e SoC: Towards a NoC centric design
e NoC centric design flow

OCCN: Methodology for communication modeling
e Whatis OCCN ?
e OCCN conceptual model

OCCN core

e (Generic representation of a connection
e Framework key points

Performance measurement with Grace
Evolution for NoC
Conclusion

Introduction

SoC interconnection backbones are moving towards NoC
paradigm in order to solve DSM issues and to master

on-chip complexity

Future SoC simulation platforms will require the
development of NoC models and modeling of NoC stack
protocol in order to speed up the exploration of different
solutions and to allow flexible architecture specification

Increasing interest in NoC simulation environments

e Co-simulation between the network and the rest of the chip
e Modeling of NoC protocol stack

o Well defined APIs in order to simplify models exchange and re-use

OCCN Methodology

SoC — Towards a NoC centric design

NI NI NI NI

NI NI NI NI

e To empower designers with techniques and tools to map
the system’s communication requirements onto a well optimized
communication architecture

° Key issues
J NOC design
. NI design

o Massive interest in NoC and NI simulation environments

NoC centric design flow

PE models
library

Selected PE
components
+
Application
requirements

Application
v

communication - computation
partitioning

/\

Computation PE/ Network services
Application API specification

A

~.

NI design
PE/NOC integration

’

Performance analysis

l

Physical realization

OCCN

OCCN : Methodology for communication modeling

e (Generic communication-centric design methodology based
on C++ and SystemC

e OCCN (On-Chip Communication Network) addresses
e high level performance modeling issues such as
speed, latency and power estimation
e modeling productivity
e model portability
e simulation speed-up
e OCCN is an on-going research activity
between several R&D organizations

What is OCCN ?

User’s Model

SystemC 2.0 .
Library OCCN Library

SystemC 2.0 Scheduler

- -

OCCN Conceptual Model

OCCN Conceptual Model

Sw Adaptation Application Layer
Application Software Interface 031 Model
Software Architecture : :
Application API
i Applicaion
Device Drivers | Operating System _)
Fresentation
Board Support Package / BIT Adaptatjon Layer
Lemmion
Hw Adaptation Trargport

\ 4
.;-: Communication API MWebwio de

[| NoC Communication Layer Data Link

m m

m m ,
Phyzical

17

OCCN core: the PDU

e Protocol = syntax + semantics PDU
e syntax = PDU ' \, SDU

e semantics = how the PDUs are exchanged 7 s
Facket Packet
Header Payload

e The PDUs exchanged have two parts:
e a header also known as the Protocol Control Information (PCI)
e a payload also known as a Service Data Unit (SDU)

e Several operators are defined for handling protocol operations
(segmentation/reassembling)

N+1 Protocol

Layer
. | v tl;ruti%?[)r;gmih
comes a Layer
¢ yntax example Protocal Control Information *ﬂ Serice Data Uit
struct MyHeader {int P; char T:}; .ﬂ..p,mmr\-+
ayer \
Pdu<MyHeader, char, 4> ny_pdu; \\

Layer W PDL
N-1 Protocol
e e]

Generic representation of a connection

e Any connection of a module to the communication node (network)
is based on 2 sets of PDU

¢ Pdu< PCIRequest, uint32>
e Pdu< PCIResponse, uint32>

e The PCI and SDU sets are defined according to the bus
specification and thus are specific to a model.

For instance they will be different for an AHB model and an STBUS

model ?t ruct PCl Request
bool Request;
unsi gned int address;
unsi gned char Opcode;
bool Lock;
unsi gned char Srcld;

struct PCl Response

{

bool ReturnRequest;
unsi gned char ReturnOpcode;
unsi gned char Srcld,;

};._

10

OCCN core : API syntax

simple message passing API

PE1l PE2
Transmitter I‘:b_g OCCN BUS MODEL @_EI Receiver
process | process
Port A Port B

void asend(Pdu<>* p)

void send(Pdu<>* p)
void send(Pdu<>* p, sc_time& time_out, bool& sent)

void asend(Pdu<>* p, sc_time& time_out, bool& sent)

Pdu<>* receive()

void reply()

void reply(uint nb_cycles)
void reply(sc_time& delay)
Pdu<>* receive(sc_time& time_out, bool& received)

11

OCCN core : API semantics
with or without acknowledge

send (Pdu)
or asend(Pdu)

asend() released

< ___________________________________

Pdu = receive()>

< reply()

12

OCCN framework key points

Message

passing

oriented
communication

Protocol state
machine
centralized

. r‘ezuesf

resgonse\

Synchronous or
asynchronous
communication
with no simulation
overhead

S
)

Generic
structure for
communication

node
Optimized
physical
transfer
i Communication
: Protocol state
. machine
Dynamic
System number of
performance bound PE
metrics

13

OCCN: PE code example

#i ncl ude “producer.h”
producer : : producer (sc_nodul e _nane nane) : sc_nodul e(nane)

{ SC_THREAD(r ead) ; }

voi d producer::read() { Protocol inlining:
char c: protocol is automatically generated

Pdu<char >* nsg;
while (cin.get(c)) {
nmsg = new Pdu<char >;
/| producer sends c
*msg = C;
out . send(nsg) ;
} /1 after the send the nmsg i s not usable

14

MPSoC architecture in OCCN

mai n()
{
sc_clock ny_clock(10, SC NS);
PE pel, pez;
SE sel;
NoC occa();

occa. cl k(ny_cl ock) ;
pel. port (occa);
pe2. port (occa);
sel. port(occa);

occa. set _address_range(&sel. port, 0x100, 0x500) ;
occa.set _priority(&el.port, 2);

occa.set _priority(&pe2.port, 5);

sc_start(-1);

15

Performance measurement with Grace

XY graph, XY charts, pie charts, polar, and fixed graphs.
User-defined scaling, ticks, labels, symbols, line styles, fonts,
colors.

Merging, validation, cumulative average, curve fitting, regression,
filtering, DFT/FFT, cross/auto-correlation, sorting, interpolation,
integration, differentiation...

Internal language, and dynamic module loading (C, Fortran, etc).
Hardcopy support with PS, PDF, GIF and PNM formats.

= Grace: fn_feur 1-Memory e =T
Hel

llllllllllllllllllllllllll

IHERNEHE

[
G
T

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

16

Evolution for NoC

e OCCN: A NoC Router

/ SC_Thread\ Output buffer

Input_behavior OUTPUT_PORT
!]
LT Outout buffer

_ OUTPUT_PORT

_J
SuButhire
SC_Method OUTPUT PORT

a vSC_Thread\

Output_Behavior Output buffer
{ I OUTPUT_PORT

e
o _/

& N N [

)

17

Conclusion

OCCN

e based on SystemC methodology
e open & flexible API

e simulation speed-up

e reusability

e productivity

e communication architecture exploration

Public part -> http://occn.sourceforge.net

18

