
M.Coppola, S.Curaba, M.Grammatikakis,
R.Locatelli, G.Maruccia, F.Papariello, L.Pieralisi

OCCN: A Network-On-Chip
Modeling and Simulation

Framework

2

Outline
• Introduction

• SoC trends
• SoC: Towards a NoC centric design

• NoC centric design flow

• OCCN: Methodology for communication modeling
• What is OCCN ?

• OCCN conceptual model

• OCCN core
• Generic representation of a connection

• Framework key points

• Performance measurement with Grace

• Evolution for NoC

• Conclusion

3

Introduction

• SoC interconnection backbones are moving towards NoC
paradigm in order to solve DSM issues and to master

on-chip complexity

• Future SoC simulation platforms will require the
development of NoC models and modeling of NoC stack
protocol in order to speed up the exploration of different
solutions and to allow flexible architecture specification

• Increasing interest in NoC simulation environments
• Co-simulation between the network and the rest of the chip

• Modeling of NoC protocol stack

• Well defined APIs in order to simplify models exchange and re-use

• OCCN Methodology

4

SoC – Towards a NoC centric design

• To empower designers with techniques and tools to map

the system’s communication requirements onto a well optimized

communication architecture

• Key issues
• NOC design

• NI design

• Massive interest in NoC and NI simulation environments

NoC
NI

NI

NI

NINI

NI NI

PE PEPEPE

PE PEPE

NI

PE

5

NoC centric design flow

Application

communication - computation
partitioning

Network services
specification

Computation PE/
Application API

Physical realization

Performance analysis

Selected PE
components

+
Application

requirements

PE models
library

PE/NOC integration

NI design

Selected NOC
+

NOC parameters

NOC models
library

OCCN

6

OCCN : Methodology for communication modeling

• Generic communication-centric design methodology based
on C++ and SystemC

• OCCN (On-Chip Communication Network) addresses
• high level performance modeling issues such as
 speed, latency and power estimation
• modeling productivity
• model portability
• simulation speed-up

• OCCN is an on-going research activity
 between several R&D organizations

On-Chip
communication

architecture

 P
E

 PE

 P
E

PE

7

What is OCCN ?

OCCN: A framework for NoC modelling
Ø open source C++ code built on top of SystemC
Ø Generic message passing APIs simplify the task of
 implementing communication drivers at different levels of
 abstraction
Ø Blocking send/receive primitives

OCCN – NoC Communication layer

PE PE PE PE
NI layer

OCCN - Communication APIs

NoC communication layer
• set of C++ classes derived from sc_channel
• channel establishes transfer of messages among
 different ports according to the protocol stack
 supported by a specific NoC

Communication APIs
• specialization of sc_port SystemC object
• message passing paradigm for inter-module
 communication

SystemC 2.0 Scheduler

SystemC 2.0
Library OCCN Library

User’s Model

8

OCCN Conceptual Model

OCCN Conceptual Model

Application Layer

Adaptation Layer

NoC Communication Layer

Application API

Communication API

Sw Adaptation

Hw Adaptation

9

OCCN core: the PDU

• Protocol = syntax + semantics
• syntax = PDU
• semantics = how the PDUs are exchanged

• The PDUs exchanged have two parts:
• a header also known as the Protocol Control Information (PCI)
• a payload also known as a Service Data Unit (SDU)

• Several operators are defined for handling protocol operations
(segmentation/reassembling)

• Syntax example
struct MyHeader {int P; char T;};

Pdu<MyHeader,char,4> my_pdu;

10

Generic representation of a connection
• Any connection of a module to the communication node (network)

is based on 2 sets of PDU
• Pdu< PCIRequest, uint32>

• Pdu< PCIResponse, uint32>

• The PCI and SDU sets are defined according to the bus
specification and thus are specific to a model.

 For instance they will be different for an AHB model and an STBUS
model

 PE STBUSresponse

PDU

RequestlPDU

request

struct PCIRequest
{
 bool Request;
 unsigned int address;
 unsigned char Opcode;
 bool Lock;
 unsigned char SrcId;
 …
};

struct PCIResponse
{
 bool ReturnRequest;
 unsigned char ReturnOpcode;
 unsigned char SrcId;
 …
};

11

OCCN core : API syntax
simple message passing API

OCCN BUS MODEL
 Transmitter

process

PE1

Port A

Receiver
process

PE2

Port B

void asend(Pdu<>* p)

void send(Pdu<>* p)

void send(Pdu<>* p, sc_time& time_out, bool& sent)

void asend(Pdu<>* p, sc_time& time_out, bool& sent)

Pdu<>* receive()

void reply()

void reply(uint nb_cycles)

void reply(sc_time& delay)

Pdu<>* receive(sc_time& time_out, bool& received)

12

OCCN core : API semantics
with or without acknowledge

 reply()

Pdu = receive()

send (Pdu)
or asend(Pdu)

Time
Module A

Time
Module B

send() released

asend() released

 PE PEBUS

13

OCCN framework key points
Message
passing
oriented

communication

PE
PDU

request

PDU

response

PE

Communication

Protocol state

machine

Optimized
physical
transfer

Synchronous or
asynchronous
communication

with no simulation
overhead Dynamic

number of
bound PE

Protocol state
machine

centralized

System
performance

metrics

Generic
structure for

communication
node

14

#include “producer.h”
producer::producer(sc_module_name name) : sc_module(name)
{SC_THREAD(read);}

void producer::read() {
 char c;
 Pdu<char>* msg;
 while (cin.get(c)) {

msg = new Pdu<char>;
 // producer sends c

 out.send(msg);

}

// after the send the msg is not usable

*msg = c;

OCCN: PE code example

Protocol inlining:
protocol is automatically generated

}

15

MPSoC architecture in OCCN

PE1

NoC

PE2

 Target
0x100-0x500

main()
{

sc_clock my_clock(10, SC_NS);
PE pe1, pe2;
SE se1;
NoC occa();

occa.clk(my_clock);
pe1.port(occa);
pe2.port(occa);
se1.port(occa);

occa.set_address_range(&se1.port,0x100,0x500);
occa.set_priority(&pe1.port, 2);
occa.set_priority(&pe2.port, 5);
sc_start(-1);

}

16

Performance measurement with Grace
• XY graph, XY charts, pie charts, polar, and fixed graphs.
• User-defined scaling, ticks, labels, symbols, line styles, fonts,

colors.
• Merging, validation, cumulative average, curve fitting, regression,

filtering, DFT/FFT, cross/auto-correlation, sorting, interpolation,
integration, differentiation...

• Internal language, and dynamic module loading (C, Fortran, etc).
• Hardcopy support with PS, PDF, GIF and PNM formats.

17

Evolution for NoC

 OCCN_IF

 OCCN_IF

 OCCN_IF

 OCCN_IF

OUTPUT_PORT

OUTPUT_PORT

OUTPUT_PORT

OUTPUT_PORT

Output buffer

Output buffer

SC_Thread
Input_behavior
{
 …………
}

SC_Thread
Output_Behavior
{
 …………
}

Synchronization
SC_Method

Output buffer

Output buffer

• OCCN: A NoC Router

18

Conclusion

• OCCN

• based on SystemC methodology

• open & flexible API

• simulation speed-up

• reusability

• productivity

• communication architecture exploration

• Public part -> http://occn.sourceforge.net

