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Abstract
The On-Chip Communication Network (OCCN) project provides an efficient, open-
source, GNU-GPL licensed framework, developed within SourceForge for the
specification, modeling, simulation, and design exploration of network on-chip (NoC)
based on an object-oriented C++ library built on top of SystemC. OCCN is shaped by
our experience in developing communication architectures for different System-on-Chip
(SoC). OCCN increases the productivity of developing communication driver models
through the definition of a universal communication API. This API provides a new design
pattern that enables creation and reuse of executable transaction level models (TLMs)
across a variety of SystemC-based environments and simulation platforms. It also
addresses model portability, simulation platform independence, interoperability, and
high-level performance modeling issues.
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1. Introduction

Due to steady downscaling of CMOS device dimensions, manufacturers are increasing
the amount of functionality on a single chip. It is expected that by the year 2005, complex
systems, called Multiprocessor System-on-Chip (MPSoC), will contain billions of
transistors. The canonical MPSoC view consists of a number of processing elements
(PEs) and storage elements (SEs) connected by a complex communication architecture.
PEs implement one or more functions using programmable components, including
general purpose processors and specialized cores, such as digital signal processor (DSP)
and VLIW cores, as well as embedded hardware, such as FPGA or application-specific
intellectual property (IP), analog front-end, peripheral devices, and breakthrough
technologies, such as micro-electro-mechanical structures (MEMS) [18] and micro-
electro-fluidic bio-chips (MEFS) [61] .

Figure 1. MPSoC configured with on-chip communication architecture, processing, and storage elements

As shown in Figure 1, a global On-Chip Communication Architecture (OCCA)
interconnects these devices, using a full crossbar, a bus-based system, a multistage
interconnection network, or a point-to-point static topology [41]. OCCA bandwidth and
data transfer parameters, e.g. acquisition delay and access time for single transfer or
burst, often limit overall SoC performance.

OCCA provides the communication mechanisms necessary for distributed computation
among different processing elements. For high performance protocols, crossbars are
attractive, since they avoid bottlenecks associated with shared bus lines and centralized
shared memory switches. Currently there are two prominent types of OCCA.
•  Traditional and semi-traditional on-chip buses, such as AMBA[2], STBus [51, 52],

and Core Connect [35]. Bus-based networks are usually synchronous and offer
several variants. Buses may be reconfigurable, hierarchical (partitionable into smaller
sub-systems), might allow for exclusive or concurrent read/write, and may provide
multicasting or broadcasting facilities.

•  The next generation network on-chip is able to meet application-specific requirements
through a powerful communication fabric based on repeaters, buffer pools, and a
complex protocol stack [3, 26, 41]. Innovative network on-chip architectures include
LIP6’s SPIN [26], MIT’s Raw network [46], and VTT’s Eclipse [24].
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The Spin NOC, proposed by the University of Pierre and Marie Curie - LIP6, uses packet
switching with wormhole routing and input queuing in a fat tree topology. It is a scalable
network for data transport, but uses a bus network for control. It is a best-effort network,
optimized for average performance, e.g. by the use of optimistic flow control coupled
with deflection routing. Commitment is given for packet delivery, but latency bounds are
only given statistically. However, input queuing causes head-of-line blocking effects,
thus being a limiting factor for providing a latency guaranty for the data network.

The Raw network tries to implement a simple, highly parallel VLSI architecture by fully
exposing low-level details of the hardware to the compiler, so that the compiler (or the
software) can determine and implement the best allocation of resources, including
scheduling, communication, computation, and synchronization, for each possible
application. Raw implements fine-grain communication between local, replicated
processing elements and, thus, is able to exploit parallelism in data parallel applications,
such as multimedia processing.

Embedded Chip-Level Integrated Parallel SupErcomputer (Eclipse) is a scalable high-
performance computing architecture for NoC. The PEs are homogeneous, multithreaded,
with dedicated instruction memory, and highly interleaved (cacheless) memory modules.
The interconnect is a high capacity, 2-d sparse-mesh that exploits locality and avoids
memory hotspots (and partly network congestion) through randomized hashing of
memory words around a module’s memory banks. The programming model is a simple
lock-step-synchronous EREW PRAM model.

OCCA choice is critical to performance and scalability of MPSoC1. An OCCA design for
a network processor, such as MIT’s Raw network on-chip, will have different
communication semantics from another OCCA design for multimedia MPSoC.
Furthermore, for achieving cost-effectively OCCA scalability, we must consider various
architectural, algorithmic, and physical constraint issues arising from Technology [37].
Thus, within OCCA modeling we must consider architecture realizability and
serviceability. Although efficient programmability is also important, it relates to high-
level communication and synchronization libraries, as well as system and application
software issues that fall outside of the OCCA scope [27].

Realizability is associated to several network design issues that control system
parallelism by limiting the concurrency level [28], such as
•  network topology, size, packetization (including header parsing, packet classification,

lookup, data encoding, and compression), switching technique, flow control, traffic
shaping, packet admission control, congestion avoidance, routing strategy, queuing
and robust buffer management, level of multicasting, cache hierarchy, multithreading
and pre-fetching, and software overheads,

•  memory technology, hierarchy, and consistency model for shared memory, and
architecture efficiency and resource utilization metrics, e.g. power consumption,
processor load, RTOS context switch delay, delays for other RTOS operations, device
driver execution time, and reliability (including cell loss), bandwidth, and latency
(including hit ratios) for a given application, network, or memory hierarchy,

                                                
1 SoC performance varies up to 250% depending on OCCA, and up to 600% depending on communication traffic [3].
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•  VLSI layout complexity, such as time-area tradeoff and clock-synchronization to
avoid skewing; an open question is “for a given bisection bandwidth, pin count, and
signal delay model, maximize clock speed and wire length within the chip”.

The new nanometer technologies provide very high integration capabilities, allowing the
implementation of very complex systems with several billions of transistors on a single
chip.  However, two main challenges should be addressed.
•  How to handle escalating design complexity and time-to-market pressures for

complex systems, including partitioning into interconnecting blocks,
hardware/software partitioning of system functionality, interconnect design with
associated delays, synchronization between signals, and data routing.

•  How to solve issues related to the technologies themselves, such as cross-talk
between wires, increased impact of the parasitic capacitance and resistors in the
global behavioral of system, voltage swing, leakage current, and power consumption.

There is no doubt that future NoC systems will generate errors, and their reliability
should be considered from the system-level design phase [20]. This is due to the non-
negligible probability of failure of an element in a complex NoC that causes transient,
intermittent, and permanent hardware and software errors, especially in corner situations,
to occur anytime. Thus, we characterize NoC serviceability with corresponding
reliability, availability, and performability metrics.
•  Reliability refers to the probability that the system is operational during a specific

time interval. Reliability is important for mission-critical and real-time systems, since
it assumes that system repair is impossible. Thus, reliability refers to the system's
ability to support a certain quality of service (QoS), i.e. latency, throughput, power
consumption, and packet loss requirements in a specified operational environment.
Notice that QoS must often take into account future traffic requirements, e.g. arising
from multimedia applications, scaling of existing applications, and network evolution,
as well as cost vs. productivity gain issues.

•  System dependability and maintainability models analyze transient, intermittent, and
permanent hardware and software faults. While permanent faults cause an irreversible
system fault, some faults last for a short period of time, e.g. nonrecurring transient
faults and recurring intermittent faults. When repairs are feasible, fault recovery is
usually based on detection (through checkpoints and diagnostics), isolation, rollback,
and reconfiguration. Then, we define the availability metric as the average fraction of
time that the system is operational within a specific time interval.

•  While reliability, availability and fault-recovery are based on two-state component
characterization (faulty, or good), system performability measures degraded system
operation in the presence of faults, e.g. increased congestion, packet latency, and
distance to destination when there is no loss (or limited loss) of system connectivity.

The rapid evolution of Electronic System Level (ESL) methodology addresses MPSoC
design. ESL focuses on the functionality and relationships of the primary system
components, separating system design from implementation. Low-level implementation
issues greatly increase the number of parameters and constraints in the design space, thus
extremely complicating optimal design selection and verification efforts. Similar to near-
optimal combinatorial algorithms, e.g. travelling salesman heuristics, ESL models
effectively prune away poor design choices by identifying bottlenecks, and focus on
closely examining feasible options. Thus, for the design of MPSoC, OCCA (or NoC)
design space exploration based on analytical modeling and simulation, instead of actual
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system prototyping, provides rapid, high quality, cost-effective design in a time-critical
fashion by evaluating a vast number of communication configurations [1, 19, 37, 38, 43,
45, 60].

The proposed On-Chip Communication Network methodology (OCCN) is largely based
on the experiences gained from developing communication architectures for different
SoC. OCCN-based models have already been used by Academia and Industry, such as ST
Microelectronics, for developing and exploring a new design methodology for on-chip
communication networks. This methodology has enabled the design of next generation
networking and home gateway applications, and complex on-chip communication
networks, such as the STMicroelectronics proprietary bus STBus, a real product found
today in almost any digital satellite decoder [51, 52].

OCCN focuses on modeling complex on-chip communication network by providing a
flexible, open-source, object-oriented C++-based library built on top of SystemC. We
have also developed a methodology for testing the OCCN library and for using it in
modeling various on-chip communication architectures.

Next, in Section 2, we focus on generic modeling features, such as abstraction levels,
separation of function specification from architecture and communication from
computation, and layering that OCCN always provides. In Section 3, we provide a
detailed description of the OCCN API, focusing on the establishment of inter-module
communication refinement through a layering approach based on two SystemC-based
modeling objects: the Protocol Data Unit (Pdu), and the MasterPort/SlavePort interface.
In Section 3, we also describe a generic, reusable, and robust OCCN statistical model
library for exploring system architecture performance issues in SystemC models. In
Section 4, we outline a transmitter/receiver case study on OCCN-based modeling,
illustrating inter-module communication refinement and high-level system performance
modeling. In Section 5, we provide conclusions and ongoing extensions to OCCN. We
conclude this paper with a list of references.
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2.  Generic Features for NoC Modeling

OCCN extends state-of-the-art communication refinement by presenting the user with a
powerful, simple, flexible and compositional approach that enables rapid IP design and
system level reuse. The generic features of our NoC modeling approach, involving
abstraction levels, separation of communication and computation, and communication
layering are described in this Section. These issues are also described in the VSIA model
taxonomy that provides a classification scheme for categorizing SoC models [58].

2.1 Abstraction Levels
A key aspect in SoC design is model creation. A model is a concrete representation of
functionality for a target SoC. In contrast to component models, virtual SoC prototype (or
virtual platform) refers to modeling the overall SoC. Thus, virtual SoC combines
processor emulation by back-annotating delays for specific applications, processor
simulation using an instruction set simulator and compiler, e.g. for ARM V4, PowerPC,
ST20, or Stanford DLX model, RTOS modeling, e.g. using a pre-emptive, static or
dynamic priority scheduler, on-chip communication simulation (including OCCA
models), peripheral simulation (models of the hardware IP blocks, e.g. I/O, timers, and
DMA, and environment simulation (including models of real stimuli). Virtual platform
enables integration and simulation of new functionalities, evaluation of the impact that
these functionalities have on different SoC architectural solutions, and exploration of
hardware/software partitioning and re-use at any level of abstraction.

Figure 2. Modeling in various abstraction levels

Notice that virtual SoC prototype may hide, modify or omit SoC properties. As shown in
Figure 2, abstraction levels span multiple levels of accuracy, ranging from functional- to
transistor-level. Each level introduces new model details [30]. We now describe
abstraction levels, starting with the most abstract and going to the most specific.

Functional models usually have no notion of resource sharing or time. Thus, functionality
is executed instantaneously, or as an ordered sequence of events as in a functional TCP
model, and the model may or may not be bit-accurate. This layer is suitable for system
concept validation, functional partitioning between control and data, including abstract
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data type definition, hardware or software communication and synchronization
mechanisms, lightwave versions of RTOS, key algorithm definition, integration to high-
level simulation via C, C++, Ada, MPI, Corba, DCOM, RMI, Matlab, ODAE Solver,
OPNET, SDL, SIMSCRIPT, SLAM, or UML technology, key algorithm definition, and
initial system testing. Models are usually based on core functionality written in ANSI C
and a SystemC-based wrapper.

Transactional behavioral models (denoted simply as transactional) are functional models
mapped to a discrete time domain. Transactions are atomic operations with their duration
stochastically determined. Although general transactions on bus protocols can not be
modeled, transactional models are particularly important for protocol design and analysis,
communication model support, i.e. shared memory, message passing or remote procedure
call, RTOS introduction, functional simulation, pipelining, hardware emulation,
parameterizable hardware/software co-design, preliminary performance estimation, and
test bench realization.

Except for asynchronous models, transactional clock accurate models (denoted
transactional CA) map transactions to a clock cycle; thus, synchronous protocols, wire
delays, and device access times can be accurately modeled. This layer is useful for
functional and cycle-accurate performance modeling of abstract processor core wrappers
(called bus functional models), bus protocols, signal interfaces, peripheral IP blocks,
instruction set simulator, and test benches, in a simple, generic and efficient way using
discrete-event systems. Transactional CA models are similar to corresponding RTL
models, but they are not synthesizable.

Register-transfer level models (RTL) correspond to the abstraction level from which
synthesis tools can generate gate-level descriptions (or netlists). RTL systems are usually
visualized as having two components: data and control. The data part is composed of
registers, operators, and data paths. The control part provides the time sequence of signals
that evoke activities in the data part. Data types are bit-accurate, interfaces are pin-
accurate, and register transfer is accurate. Propagation delay is usually back annotated
from gate models.

Gate models are described in terms of primitives, such as logic with timing data and
layout configuration. For simulation reasons, gate models may be internally mapped to a
continuous time domain, including currents, voltages, noise, clock rise and fall times.
Storage and operators are broken down into logic implementing the corresponding digital
functions, while timing for individual signal paths can be obtained.

Thus, an embedded physical SRAM memory model may be defined as:
•  a collection of constraints and requirements described as a functional model in a high-

level general programming language, such as Ada, C, C++ or Java,
•  implementation-independent RTL logic described in VHDL or Verilog languages,
•  as a vendor gate library described using NAND, flip-flop schematics, or
•  at the physical level, as a detailed and fully characterized mask layout, depicting

rectangles on chip layers and geometrical arrangement of I/O and power locations.

As an example in Figure 3, we show a functional C++-based model of an SRAM. This
high-level model is much simpler than a corresponding (300+ lines) VHDL model that
includes complete timing parameters [32], thus decreasing design time and life cycle
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maintenance costs. Furthermore, notice that in the VHDL model description, it is not
possible to distinguish code used specifically for SRAM control from code referring
solely to the data path [57, 61].
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/* core functionality written in C */
/* sram_func.c
#define SRAM_SIZE 128

static int32 sram[SRAM_SIZE]; // data element

static int32 sram_read(int32* ptr, int row) // control element
{ return *(ptr+row); }

void sram_write(int32* ptr, int row, int32 data) // control
{ *(ptr+row)=data; }

// Sram.h file – wrapper written in System C
class sram : public sc_module // function description
{ public:
    sram(sc_module_name name);
    sc_port<sc_fifo_in_if <int32> > in; // communication port
    sc_port<sc_fifo_out_if <int32> > out; // communication port
    SC_HAS_PROCESS(sram);
  private:
     void behavior(); };

//Sram.cpp file
sram::sram(sc_module_namename):sc_module(name) // SystemC wrapper
{ SC_THREAD(behavior); }
void sram::behavior()
{ struct {
    int32 data, addr;
    bool rnw } d;
  while (true) {
     in->read(d);
     if (d.rnw) out->write(sram_read(d.addr));
     else
     sram write(d.addr,d.data) }
N SOFTWARE LICENSE: GNU GPL                                                         PAGE  8 OF  64

Figure 3. Functional model abstraction of an SRAM

rder to provide system performance measurements, e.g. throughput rates, packet loss,
tency statistics, system computation (behavior) and communication models must be
tated with an abstract notion of time. Analysis using parameter sweeps helps
ate the sensitivity of high-level design due to perturbations in the architecture, and

 examine the possibility of adding new features in derivative products [8, 9].
ever, architectural delays are not always cycle-accurate. For example, for
putational components mapped to a particular RTOS or large communication
actions mapped to a particular shared bus, it is difficult to accurately estimate thread

ys, which depend on precise system configuration and load. Similarly, for deep sub-
on technology, wire delays that dominate protocol timings can not be determined
 layout time. Thus, one must include all necessary synchronization points and/or
face logic in order to avoid deadlocks or data races and ensure correct behavior
pendent of computation or communication delays.

hese abstract models can be analyzed, verified and validated in stand-alone manner.
ever, detailed VHDL or Verilog models are inadequate for system level description
to poor simulation performance, and a higher abstraction level is desirable. Thus,
n high-level views and increased simulation speed are desirable, systems may be
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modeled at the transaction level using an appropriate abstract data type (ADT), e.g.
processor core, video line, or network communication protocol-specific data structure.
With transactional modeling, the designer is able to focus on IP functionality, rather than
on detailed data flows or hardware details of the physical interface, e.g. FIFO sizes and
time constraints.

2.2 Separation of Communication and Computation Components

System level design methodology is based on the concept of orthogonalization of
concerns [25]. This includes separation of
•  function specification from architecture, i.e. what are the basic system functions vs.

how the system organizes software, firmware and hardware components in order to
implement these functions, and

•  communication from computation (also called behavior).

This orthogonalization implies a refinement process that eventually maps specifications
for behavior and communication interfaces to the hardware or software resources of a
particular architecture, e.g. as custom-hardware groupings sharing a bus interface or as
software tasks. This categorization process is called system partitioning and forms a basic
element of co-design [41]. Notice that function specification, i.e. behavior and
communication, is generally independent of the particular implementation. Only in
exceptional cases, specification may guide implementation, e.g. by providing advice to
implementers, or compiler-like pragmas.

Separation between communication and computation is a crucial part in the stepwise
transformation from a high-level behavioral model of an embedded system into actual
implementation. This separation allows refinement of the communication channels of
each system module. Thus, each IP consists of two components.
•  A behavior component is used to describe module functionality. At functional

specification level a behavior is explained in terms of its effect, while at design
specification level a behavior corresponds to an active object in object-oriented
programming, since it usually has an associated identity, state and an algorithm
consuming or producing communication messages, synchronizing or processing data
objects. Access to a behavior component is provided via a communication interface
and explicit communication protocols. Notice that this interface is considered as the
only way to interact with the behavior.

•  A communication interface consists of a set of input/output ports transferring
messages between one or more concurrent behavior components. The interface
supports various communication protocols. Behaviors must be compatible, so that
output signals from one interface are translated to input signals to another. When
behaviors are not compatible, specialized channel adapters are needed.

Notice that by forcing IP objects to communicate solely through communication
interfaces, we can fully de-couple module behavior from inter-module communication.
Therefore, inter-module communication is never considered in line with behavior, but it
is completely independent. Both behavior and communication components can be
expressed at various levels of abstraction. Static behavior is specified using untimed
algorithms, while dynamic behavior is explained using complex simulation-based
architectures, e.g. hierarchical finite state machines or Threads. Similarly, communication
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can be either abstract, or close to implementation, e.g. STMicroelectronics’ proprietary
STbus [51, 52], OCP [30], VCI interfaces [58], or generic interface prototypes.

Moreover these C++-based objects support protocol refinement. Protocol refinement is
the act of gradually introducing lower level detail in a model, making it closer to the real
implementation, while preserving desired properties and propagating constraints to lower
levels of abstraction. Thus, refinement is an additive process, with each detail adding
specificity in a narrower context.

2.3 OSI-Like Layering for Inter-Module Communication Refinement

Communication protocols enable an entity in one host to interact with a corresponding
entity in another remote host. One of the most fundamental principles in modeling
complex communication protocols is establishing protocol refinement. Protocol
refinement allows the designer to explore model behavior and communication at different
level of abstractions, thus trading between model accuracy with simulation speed. Thus, a
complex IP could be modeled at the behavioral level internally, and at the cycle level at
its interface allowing validation of its integration with other components. Optimal design
methodology is a combination of top-down and bottom-up refinement.
•  In top-down refinement, emphasis is placed on specifying unambiguous semantics,

capturing desired system requirements, optimal partitioning of system behavior into
simpler behaviors, and refining the abstraction level down to the implementation by
filling in details and constraints.

•  In bottom-up integration, IP-reuse oriented implementation with optimal evaluation,
composition and deployment of prefabricated architectural components, derived from
existing libraries from a variety of sources, drives the process. In this case, automatic
IP integration is important, e.g. automatic selection of a common or optimal high-
speed communication standard.

Figure 4. Enabling communication refinement

As shown in Figure 4, communication refinement refers to being able to modify or
substitute a given communication layer, without changing lower communication layers,
computational modules, or test benches. In communication refinement, the old protocol is
either extended to a lower abstraction level, or replaced by a completely new bus protocol
implemented at a similar or lower abstraction level. Inter-module communication
refinement is fundamental to addressing I/O and data reconfiguration at a any level of
hierarchy without re-coding, and OCCA design exploration. Communication refinement
is often based on communication layering.

Layering is a common way to capture abstraction in communication systems. It is based
on a strictly hierarchical relationship. Within each layer, functional entities interact
directly only with the layer immediately below, and provide facilities for use by the layer

Generic Bus

Communication Refinement

Specific Bus, e.g. STBus
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above it. Thus, an upper layer always depends on the lower layer, but never the other way
round. An advantage of layering is that the method of passing information between layers
is well specified, and thus changes within a protocol layer are prevented from affecting
lower layers. This increases productivity, and simplifies design and maintenance of
communication systems.

Efficient inter-module (or inter-PE) communication refinement for OCCA models
depends on establishing appropriate communication layers, similar to the OSI
communication protocol stack. This idea originated with the application- and system-
level transactions in Cosy [6], which was based on concepts developed within the VCC
framework [13, 21, 22, 34, 47, 48, 50]. A similar approach, with two distinct
communication layers (message and packet layer) has been implemented in IPSIM, an ST
Microelectronics-proprietary SystemC-based MPSoC modeling environment [14, 16, 17].
•  The message layer provides a generic, user-defined message API that enables reuse

of the packet layer by abstracting away the underlying channel architecture, i.e. point-
to-point channel, or arbitrarily complex network topology, e.g. Amba, Core Connect,
STBus. Notice that the firing rule, determining the best protocol for token
transmission, is not specified until later in the refinement process.

•  The packet layer provides a generic, flexible and powerful communication API based
on the exchange of packets. This API abstracts away all signal detail, but enables
representation of the most fundamental properties of the communication architecture,
such as switching technique, queuing scheme, flow control, routing strategy, routing
function implementation, unicast/multicast communication model. At this abstraction
level, a bus is seen as a node interconnecting and managing communication among
several modules of two kinds (masters and slaves).

Figure 5. STBus: An OSI-like layered approach to inter-module communications

An extension of this approach to include more communication layers is immediate. For
example, as shown in Figure 5, the model for the communication protocol stack of ST
Microelectronics’ STBus, an on chip communication network, is based on the following
four layers.
•  The transaction layer defines communication between two system modules. Most

communications involve data access. A data access may involve the transfer of a
single packet or a sequence of packets.
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•  The packet layer breaks operations into one or more request/response packet pairs
depending on the complexity of the protocol, the amount of data to be transferred, and
the width of the interface. Each packet carries a fixed quantum of data directly
mapped onto the interconnection architecture. Thus, for STBus, the amount of
information to be transferred in the request phase is either the same (type 1/type 2), or
differ (type 3 interface) from that transferred in the response phase

•  The cell layer breaks these packets into a series of cells, each cell having the right
width to match the packet route through the on-chip communication architecture.

•  Finally, the physical layer is responsible for physical encoding of these cells, adding
outbound framing and flow control information. Simple protocol verification may be
performed for each layer in the hierarchy.

2.4 SystemC Communication

The primary modeling element in SystemC is a module (sc_module). A module is a
concurrent, active class with a well-defined behavior mapped to one or more processes
(i.e. a thread or method) and a completely independent communication interface.

In SystemC inter-module communication is achieved using interfaces, ports, and
channels as illustrated in Figure 6. An interface (circle with one arrow) is a pure
functional object that defines, but does not implement, a set of methods that define an
API for accessing the communication channel. Thus, interface does not contain
implementation details. A channel implements interfaces and various communication
protocols. A port, shown as a square with two arrows in Figure 6, enables a module, and
hence its processes, to access a channel through a channel interface. Thus, since a port is
defined in terms of an interface type, the port can be used only with channels that
implement this interface type. SystemC port, interface and channel allow separating
behavior from communication.

Figure 6. SystemC module components: behavior and inter-module communication

Access to a channel is provided through specialized ports (small red squares in Figure 6.
For example, for the standard sc_fifo channel two specializations are provided:
sc_fifo_in<T> and sc_fifo_out<T>. They allow FIFO ports to be read and written
without accessing the interface methods. Hereafter, they are referred to as Port API.

An example is shown below.
  class producer : public sc_module {
    public:
     sc_fifo_out<char> out; // define “out” port;
     SC_CTOR(producer) { SC_THREAD(produce); }

Channel

Module

port a

process

port b Receiver
process

Channel

Module
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 Transmit
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     void produce() {
       const char *str = “hello world!";
       while(*str){ out.write(*str++); } // call API of “out”
  };
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3. The OCCN Methodology

As all system development methodologies, any SoC object oriented modeling would
consist of a modeling language, modeling heuristics and a methodology [49]. Modeling
heuristics are informal guidelines specifying how the language constructs are used in the
modeling process. Thus, the OCCN methodology focuses on modeling complex on-chip
communication network by providing a flexible, open-source, object-oriented C++-based
library built on top of SystemC. System architects may use this methodology to explore
NoC performance tradeoffs for examining different OCCA implementations.

Alike OSI layering, OCCN methodology for NoC establishes a conceptual model for
inter-module communication based on layering, with each layer translating transaction
requests to a lower-level communication protocol. As shown in Figure 7 OCCN
methodology defines three distinct OCCN layers. The lowest layer provided by OCCN,
called NoC communication layer, implements one or more consecutive OSI layers
starting by abstracting first the Physical layer. For example, the STBus NoC
communication layer abstracts the physical and data link layers. On top of the OCCN
protocol stack, the user-defined application layer maps directly to the application layer of
the OSI stack. Sandwiched between the application and NoC communication layers lies
the adaptation layer that maps to one or more middle layers of the OSI protocol stack,
including software and hardware adaptation components. The aim of this layer is to
provide, through efficient, inter-dependent entities called communication drivers, the
necessary computation, communication, and synchronization library functions and
services that allow the application to run. Although adaptation layer is usually user-
defined, it utilizes functions defined within the OCCN communication API.

Figure 7. OSI-like OCCN layering model with APIs shown

An implementation of an adaptation layer includes software and hardware components,
as shown in the left part of Figure 7. A typical software adaptation layer includes several
sub-layers. The lowest sub-layer is usually represented by the board support package
(BSP) and built in tests (BIT). The BSP allows all other software, including the Operating
System (OS), to be loaded into memory and start executing, while BIT detects and
reports hardware errors. On top of this sub-layer we have the OS and device drivers. The
OS is responsible for overall software management, involving key algorithms, such as job
scheduling, multitasking, memory sharing, I/O interrupt handling, and error and status
reporting. Device drivers manage communication with external devices, thus supporting
the application software. Finally, the software architecture sub-layer provides execution
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control, data or message management, error handling, and various support services to the
application software.

The OCCN conceptual model defines two APIs.
•  The OCCN communication API provides a simple, unique, generic, ultra-efficient and

compact interface that greatly simplifies the task of implementing various layers of
communication drivers at different level of design abstraction. The API is based on
generic modeling features, such as IP component reuse and separation between
behavior and communication. It also hides architectural issues related to the particular
on-chip communication protocol and interconnection topology, e.g. simple point-to-
point channel vs. complex, multilevel NoC topology supporting split transactions, and
QoS in higher communication layers, thus making internal model behavior module-
specific. The OCCN communication API is based on a message-passing paradigm
providing a small, powerful set of methods for inter-module data exchange and
synchronization of module execution. This paradigm forms the basis of the OCCN
methodology, enhancing portability and reusability of all models using this API.

•  The application API forms a boundary between the application and adaptation 1ayers.
This API specifies the necessary methods through which the application can request
and use services of the adaptation layer, and the adaptation layer can provide these
services to the application.

The OCCN implementation for inter-module communication layering uses generic
SystemC methodology, e.g. a SystemC port is seen as a service access point (SAP), with
the OCCN API defining its service. Applying the OCCN conceptual model to SystemC,
we have the following mapping.
•  The NoC communication layer, is implemented as a set of C++ classes derived from

the SystemC sc_channel class. The communication channel establishes the transfer
of messages among different ports according to the protocol stack supported by a
specific NoC.

•  The communication API is implemented as a specialization of the sc_port SystemC
object. This API provides the required buffers for inter-module communication and
synchronization and supports an extended message passing (or even shared memory)
paradigm for mapping to any NoC.

•  The adaptation layer translates inter-module transaction requests coming from the
application API to the communication API. This layer is based on port specialization
built on top of the communication API. For example, the communication driver for an
application that produces messages with variable length may implement
segmentation, thus adapting the output of the application to the input of the channel.

The fundamental components of the OCCN API are the Protocol Data Unit (Pdu), the
MasterPort and SlavePort interface, and high-level system performance modeling. These
components are described in the following sections.

3.1 The Protocol Data Unit (Pdu)

Inter-module communication is based on channels implementing well-specified protocols
by defining rules (semantics) and types (syntax) for sending and receiving protocol data
units (or Pdus, according to OSI terminology). In general, Pdus may represent bits,
tokens, cells, frames, or messages in a computer network, signals in an on-chip network,
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or jobs in a queuing network. Thus, Pdus are a fundamental ingredient for implementing
inter-module (or inter-PE) communication using arbitrarily complex data structures.

A Pdu is essentially the optimized, smallest part of a message that can be independently
routed through the network. Messages can be variable in length, consisting of several
Pdus. Each Pdu usually consists of various fields.
•  The header field (sometimes called protocol control information, or PCI) provides

the destination address(es), and sometimes includes source address. For variable size
Pdus, it is convenient to represent the data length field first in the header field. In
addition, routing path selection, or Pdu priority information may be included.
Moreover, header provides an operation code that distinguishes: (a) request from
reply Pdus, (b) read, write, or synchronization instructions, (c) blocking, or
nonblocking instructions, and (d) normal execution from system setup, or system test
instructions. Sometimes performance related information is included, such as a
transaction identity/type, and epoch counters. Special flags are also needed for
synchronizing accesses to local communication buffers (which may wait for network
data), and for distinguishing buffer pools, e.g. for pipelining sequences of
nonblocking operations.  In addition, if Pdus do not reach their destinations in their
original issue order, a sequence number may be provided for appropriate Pdu
reordering. Furthermore, for efficiency reasons, we will assume that the following
two fields are included with the Pdu header.
� The checksum (CRC) decodes header information (and sometimes data) for error

detection, or correction.
� The trailer consisting of a Pdu termination flag is used as an alternative to a Pdu

length sub-field for variable size Pdus.
•  The data field (called payload, or service data unit, or SDU) is a sequence of bits that

are usually meaningless for the channel. A notable exception is when data reduction
is performed within a combining, counting, or load balancing network.

Basic Pdus in simple point-to-point channels may contain only data. For complicated
network protocols, Pdus must use more fields, as explained below.
•  Remote read or DMA includes header, memory address, and CRC.
•  Reply to remote read or DMA includes header, data, and CRC.
•  Remote write includes header, memory address, data, and CRC.
•  Reply from remote write includes header and CRC.
•  Synchronization (fetch&add, compare&swap, and other read-modify-write

operations) includes header, address, data, and CRC.
•  Reply from synchronization includes header, data, and CRC.
•  Performance-related instructions, e.g. remote enqueue may include various fields to

access concurrent or distributed data structures.

Furthermore, within the OCCN channel, several important routing issues involving Pdu
must be explored (see Section 1). Thus, OCCN defines various functions that support
simple and efficient interface modeling, such as adding/striping headers from Pdus,
copying Pdus, error recovery, e.g. checkpoint and go-back-n procedures, flow control,
segmentation and re-assembly procedures for adapting to physical link bandwidth,
service access point selection, and connection management. Furthermore, the Pdu
specifies the format of the header and data fields, the way that bit patterns must be
interpreted, and any processing to be performed (usually on stored control information) at
the sink, source or intermediate network nodes.
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The Pdu class provides modeling support for the header, data field and trailer as
illustrated in the following C++ code block.
  template <class H, class BU, int size>
    class Pdu  {
      public:
        H hdr; // header (or PCI)
        BU body[size]; // data (or SDU)

        // Assignments that modify & return lvalue:
        Pdu& operator=(const BU& right);
        BU& operator[](unsigned int x); // accessing Body, if size > 1

        // Conditional operators return true/false:
        int operator==(const Pdu& right) const;
        int operator!=(const Pdu& right) const;

        // std streams display purpose
        friend ostream& operator<< <>(ostream& os, const Pdu& ia);
        friend istream& operator>> <>(istream& is, Pdu& right);

        // Pdu streams for segmentation/re-assembly
     friend Pdu<H,BU,size>& operator<< <> (Pdu& left, const Pdu& right);
     friend Pdu<H,BU,size>& operator>> <> (Pdu& left, Pdu& right);
}

Depending on the circumstances, OCCN Pdus are created using four different methods.
Always HeaderType (H) is a user-defined C++ struct, while BodyUnitType (BU) is
either a basic data type, e.g. char and int, or an encapsulated Pdu; the latter case is
useful for defining layered communication protocols.
•  Define a simple Pdu containing a body of length many elements of BodyUnitType:
     Pdu<BodyUnitType, length> pk2

•  Define a simple Pdu containing only a body of BodyUnitType:
     Pdu<BodyUnitType> pk1

•  Define a Pdu  containing a header and a body of BodyUnitType:
     Pdu<HeaderType, BodyUnitType> pk3

•  Define a Pdu containing a header and a body of length many elements of
BodyUnitType:

     Pdu<HeaderType, BodyUnitType, length> pk4

Processes access Pdu data and control fields using the following functions.
•  The occn_hdr(pk, field_name) function is used to read or write the Pdu header.
•  The standard operator “=” is used to

� read or write the Pdu body,
� copy Pdus of the same type.

•  The operator s “>>”and “<<”  are used to
� send or receive Pdu from input/output streams, and
� segmentation and re-assembly Pdus.

For example, we can define a Pdu containing only a header as follows.
struct header {char addr, char opcode};
Pdu<header> pdu1;

Similarly, we can define a Pdu containing a body with a single character as follows.
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 Pdu<char> pk1, pk2; // we declare two Pdus containing body only
 pk1=’a’; // pk1 contains ‘a’
 pk2=pk1; // now pk2 is equal to pk1, copy operator
 char x=pk1; // x assumes the value of ‘a’;
 // since pk1 is equal to pk2 the cout statement is executed
 if (pk1==pk2)
    cout << "pk1 == pk2" << endl;

Pdus may be duplicated as follows. This operation is useful for sending a Pdu while
keeping a local copy.
 Pdu<char> pk1, pk2;
 pk2=pk1;

Figure 8. Pdu encapsulation in communication layers

As shown in Figure 8, layered protocols may also encapsulate a Pdu from another layer.

The following example shows all operations that an N-layer protocol has to perform in
order to build an N-layer Pdu, and subsequently an  N+1-layer Pdu.
  typedef Pdu<n1_pci,char> N1pdu  // declare a Pdu for layer N+1
  N1pdu p1, p2;
  typedef Pdu<n_pci,N1pdu> Npdu // declare a Pdu for layer N
  NPdu p3,p4;
  p1='a';// p1 contains 'a'
  p3=p1; // p3 contains p1 (add operation)
  p4=p3; // p4 is equal to p3 (copy operation)
  p2=p4; // p2 assumes the value of the body (strip operation)
  char tmp=pk1;
  // since both the body of p1 and tmp are equal to ‘a’,
  // then, the cout statement is executed
  if (pk1==’a’) && (tmp==’a’)
     cout << "pk1 == b" << endl;

Figure 9. A simple token DS LINK (IEEE 1355)

P T Data
P T Control
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As an example, let us consider the high-speed digital serial links known as IEEE1355.
IEEE 1355 specifies the physical media and low-level protocols for a family of serial
scalable interconnect systems. Pdus defined in the character layer are called tokens. They
include a parity bit (P) plus a control bit (T) used to distinguish between data and control
tokens. In addition, a data token contains 8 bits of data, and control tokens contain two
bits to denote the token type. This is illustrated in Figure 9. The OCCN modeling
structure is as follows.
 struct DSLINK_token {
  uint P :1;
  uint T :1; }
 Pdu<DSLINK_token, char> pk1, pk2;
 occn_hdr(pk1,P)=1; // parity field in pk1 is set equal to 1
 occn_hdr(pk1,T)=0; // we set pk1 as data token, because T=0
 uint tmp = occn_hdr(pk1,P); // tmp is set equal to 1
 char body =  ’a’;
 pk1 = body; // pk1 contains ‘a’
 pk2 = pk1; // now pk2 and pk1 are the same, since “=” copies Pdus
 char x = pk2; // x assume the value of ‘a’;
 // since pk1 is equal to pk2 and x is equal to ‘a’,
 // the cout statement is executed
 if ((pk1 == pk2) && (x == ’a’))
    cout << "pk1 == pk2" << endl;

Figure 10. A complex Pdu for a CSMA/CD LAN

Alternatively, as illustrated in Figure 10, a complex Pdu containing both header and body
for a local area network CSMA/CD may be defined as follows.
 struct CSMA_CD_crtl {
  int8 preamble[7];
  int8 sfd;
  int8 dest[6];
  int8 source[6];
  int16 length;
  int32 FCS;
 };
 // first argument is the type, while last one is the size of the body
 Pdu< CSMA_CD_ctrl, char, 1500> pk1, pk2;
 occn_hdr(pk1,sfd)=3; // set sfd field in pk1 to 3
 int8 tmp=occn_hdr(pk1,sfd); // set tmp to 3
 char body[1500] =”The body of a Pdu”;
 pk1=body; // pk1 contains ”I am the body of a Pdu” (all data copied)
 pk2=”I am an OCCN Pdu”; // pk2 contains ”I am an OCCN Pdu”;
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 // since pk1 is not equal to pk2 the cout statement is executed
 if (pk1!=pk2)
    cout << "pk1 != pk2" << endl;

Segmentation and re-assembly are very common operations in network protocols. Thus,
OCCN supports the overloaded operators “>>”, “<<”. The following is a full
segmentation/ reassembly example.
  typedef struct { int32 seq;} Headermsg;
  Pdu< Headermsg, char, 4 > pk0, pk1, pk2, pk3;
  Pdu< Headermsg, char, 8> msg1, msg2;

  occn_hdr(msg1, seq)=13;
  msg1=”abcdefgh”; // msg1 contains ‘abcdefgh’;

  msg1>>pk0; // pk0 contains 13;
  msg1>>pk1; // pk1 contains ‘abcd’;
  msg1>>pk2; // pk2 contains ‘efgh’ and msg1 is empty;;
  msg1>>pk3  // pk3 is empty since msg1 was empty

  //previous three statements are equivalent to
  msg1>>pk1>>pk2>>pk3;

  msg2<<pk0; // msg2 contains ‘+’
  msg2<<pk1; // msg2 contains ‘abcd’;
  msg2<<pk2; // msg2 contains ‘abcdefgh’

  // the previous statements are equivalent to the statement:
  // msg2<<pk0<<pk1<<pk2;

  int tmp=occn_hdr(msg2,seq);  // tmp is equal to 13

3.2 The MasterPort  & SlavePort  API

The Pdu is a key element in the OCCN API, with its structure being determined by the
corresponding OCCA model. In this Section we describe the transmission/reception
interface of the OCCN API. The paradigm used for this interface is message-passing,
with send and receive primitives for point-to-point and multi-point communication. If the
Pdu structure is determined according to a specific OCCA model, the same base
functions are required for transmitting the Pdu through almost any OCCA. A great effort
is dedicated to define this interface as a reduced subset of functions providing users with
a complete and powerful semantic. In this manner, we can achieve model reuse and inter-
module communication protocol refinement through a generic OCCA access interface.
Thus, the same base functions are used for transmitting a Pdu for almost any OCCA, e.g.
AMBA, STBus, Sonics, or Core connect.

Message passing systems may efficiently emulate a variety of communication paradigms
based on shared memory, remote procedure call (RPC), or Ada-like rendezvous.
Furthermore, the precise semantic flavor of message-passing primitives defining basic
data exchange between user-defined tasks can often be mixed. For example, they may
reflect completion semantics, i.e. specifying when control is returned to the user process
that issued the send or receive, or specifying when the buffers (or data structures) can be
reused without compromising correctness.

For message passing, there are two major point-to-point send/receive primitives:
synchronous and asynchronous. Synchronous primitives are based on acknowledgments,
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while asynchronous primitives usually deposit and remove messages to/from application
and system buffers. Within the class of asynchronous point-to-point communications,
there are also two other major principles: blocking and non-blocking. While non-blocking
operations allow the calling process to continue execution, blocking operations suspend
execution until receiving an acknowledgment or timeout. Although, we often define
various buffer-based optimization-specific principles, e.g. the standard, buffered, and
ready send/receive in the MPI standard, we currently focus only on the major
send/receive principles.

Synchronous blocking send/receive primitives offer the simplest semantics for the
programmer, since they involve a handshake (rendezvous) between sender and receiver.
•  A synchronous send busy waits (or suspends temporarily) until a matching receive is

posted and receive operation has started. Thus, the completion of a synchronous send
guarantees (barring hardware errors) that the message has been successfully received,
and that all associated application data structures and buffers can be reused. A
synchronous send is usually implemented in three steps.
� First, the sender sends a request-to-send message.
� Then, the receiver stores this request.
� Finally, when a matching receive is posted, the receiver sends back a permission-

to-send message, so that the sender may send the packet.
•  Similarly, a synchronous receive primitive busy waits (or suspends temporarily) until

there is a message to read.

With asynchronous blocking operations we avoid polling, since we know exactly when
the message is sent/received. Furthermore, in a multi-threaded environment, a blocking
operation blocks only the executing thread, allowing the thread scheduler to re-schedule
another thread for execution, thus resulting in performance improvement. The
communication semantics for point-to-point asynchronous blocking primitives are
defined as follows.
•  The blocking send busy waits (or suspends temporarily) until the packet is safely

stored in the receive buffer (if the matching receive has already been posted), or in a
temporary system buffer (message in care of the system). Thus, the sender may
overwrite the source data structure or application buffer after the blocking send
operation returns. Compared to a synchronous send, this allows the sending process to
resume sooner, but the return of control does not guarantee that the message will
actually be delivered to the appropriate process. Obtaining such a guarantee would
require additional handshaking.

•  The blocking receive busy waits (or suspends temporarily) until the requested
message is available in the application buffer. Only after the message is received, the
next receiver instruction is executed. Unlike a synchronous receive, a blocking
receive does not send an acknowledgment to the sender.

Asynchronous non-blocking operations prevent deadlocks due to lack of buffer space,
since they avoid the overhead of allocating system buffers and issuing memory-to-
memory message copies. Non-blocking also improves performance by allowing
communication and computation overlap, e.g. via the design of intelligent controllers
based on parallel programming or multithreading principles. More specifically, for point-
to-point asynchronous non-blocking send/receive primitives, we define these following
semantics.
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•  A non-blocking send initiates the send operation, but does not complete it. The send
returns control to the user process before the message is copied out of the send buffer.
Thus, data transfer out of the sender memory may proceed concurrently with
computations performed by the sender after the send is initiated and before it is
completed. A separate send completion function, implemented by accessing (probing)
a system communication object via a handle, is needed to complete the
communication, i.e. for the user to check that the data has been copied out of the send
buffer, so that the application data structures and buffers may be reused2. These
functions either block until the desired state is observed, or return control
immediately reporting the current send status.

•  Similarly, a non-blocking receive initiates the receive operation, but does not
complete it. The call will return before a message is stored at the receive buffer. Thus,
data transfer into receiver memory may proceed concurrently with computations
performed after receive is initiated and before it is completed. A separate receive
completion function, implemented by accessing (probing) a system communication
object via a handle, is needed to complete the receive operation, i.e. for the user to
verify that data has been copied into the application buffer1. These probes either block
until the desired state is observed, or return control immediately reporting the current
receive status.

We can combine synchronous, asynchronous blocking, and asynchronous non-blocking
send/receive pairs. However, in some cases, the semantics become very complex. In
standard message passing libraries, such as MPI, there exist over 50 different (and largely
independent) functions for point-to-point send/receive principles. Moreover, there are
literally hundreds of ways to mix and match these function calls.

The precise type of send/receive semantics to implement depends on how the program
uses its data structures, and how much we want to optimize performance over ease of
programming and portability to systems with different semantics. For example,
asynchronous sends alleviate the deadlock problem due to missing receives, since
processes may proceed past the send to the receive process. However, for non-blocking
asynchronous receive, we need to use a probe before actually using the received data.

For efficiency reasons, the OCCN MasterPort/SlavePort API is based only on
synchronous blocking send/receive and asynchronous blocking send primitives. The
proposed methods support synchronous and asynchronous communication, based on
either a synchronous (cycle-based), or asynchronous (event-driven) OCCA model.
•  In synchronous blocking send/receive one party may send a Pdu only if the other is

prepared to receive it. A process that calls send() is blocked until its message is
received,. Similarly, a process that calls receive() or reply() is blocked until it
receives a message. If the channel is busy, waiting sender tasks compete to acquire
the channel using a FIFO priority scheme.

•  In asynchronous blocking send one party may send a Pdu whether or not the other is
ready to receive it. Moreover, a process that calls asend()may execute other actions
only after the dispatch of a Pdu, i.e. when the channel is free; if the channel is busy,
waiting tasks compete to acquire the channel using a FIFO priority scheme. This

                                                
2 Blocking send (receive) is equivalent to non-blocking send (resp., receive) immediately followed by a
blocking send (resp., receive) completion function call.
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process may return later to check the status of the dispatched Pdu, e.g. by establishing
a handshake.

 sc_port <MasterIf <……..> > 

MasterPort<Pdu<…>,Pdu<…> > 

sc_port <SlaveIf <……..> > 

SlavePort<Pdu<…>,Pdu<…> > 

Figure 11.  MasterPort and SlavePort derived from sc_port

As shown in Figure 11, the transmission/reception function interface is implemented
using two specializations of the standard SystemC sc_port<…>, called MasterPort<…>
and SlavePort<…>. The name Master/Slave is given just for commodity reasons, i.e.
there is no relationship with the Master/Slave library provided in SystemC, or RPC
concepts introduced earlier by CoWare [7]; this encompasses the limitation that the
Master port is always connected to a Slave one. In our case, the name Master is
associated to the entity, which is responsible to start the communication.  Master and
Slave ports are defined as templates of the outgoing and incoming Pdu. In most cases, the
outgoing (incoming) Pdu for the Master port is the same as the incoming (respectively,
outgoing) Pdu for the Slave port.

Hereafter, a list of the OCCN MasterPort/SlavePort API is provided.
•  void send(Pdu<…>* p, sc_time& time_out=-1, bool& sent); This function

implements synchronous blocking send. Thus, the sender will deliver the Pdu p, only
if the channel is free, the destination process is ready to receive, and the user-defined
timeout value has not expired. Otherwise, the sender is blocked and the Pdu is
dispatched. While the channel is busy (or the destination process is not ready to
receive), and the timeout value has not expired, waiting sender tasks compete to
acquire the channel using a FIFO priority scheme. Upon function exit, the boolean
flag sent returns false, if and only if the timeout value has expired before sending
the Pdu; this event signifies that the Pdu has not been sent

•  void asend(Pdu<…>* p, sc_time& time_out=-1, bool& dispatched); This
function implements asynchronous blocking send. Thus, if the channel is free and the
user-defined timeout value has not expired, then the sender will dispatch the Pdu p
whether or not the destination process is ready to receive it. While the channel is
busy, and the user-defined timeout value has not expired, waiting sender tasks
compete to acquire the channel using a FIFO priority scheme. The boolean flag
dispatched returns false, if and only if the timeout value has expired before sending
the Pdu; this event signifies Pdu loss.

•  The OCCN API implements a synchronous blocking receive using a pair of functions:
receive and reply.
� Pdu<…>* receive(sc_time& time_out=-1, bool& received); This

function implements synchronous blocking receive. Thus, the receiver is blocked
until it receives a Pdu, or until a user-defined timeout has expired. In the latter
case, the boolean flag received returns false, while the Pdu value is undefined.

� void reply(uint delay=0) or void reply(sc_time delay); After a
dynamically variable delay time, expressed as a number of bus cycles or as
absolute time (sc_time), the receiver process completes the transaction. Return
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from reply ensures that the channel send/receive operation is completed and that
the receiver is synchronized with the sender. The following code is used for
receiving a Pdu.

     sc_time timeout = ….;
     bool received;
     // Suppose that in is an OCCN SlavePort
     Pdu<…> *msg = in.receive(timeout, received);
     if (!received)
       // timeout expired: received Pdu not valid
     else
       // received Pdu is valid; user may perform elaboration on Pdu
       reply(); // synchronizing sender & receiver after 0 bus cycles

Notice that when the delay of a transaction is measured in terms of bus cycles, OCCN
assumes that the channel is the only one to have knowledge of the clock, allowing
asynchronous processes to be connected to synchronous clocked communication media.
In both cases the latency of reply can be fixed or dynamically calculated after the
receive, e.g. as a function of the received Pdu.

An example of fixed receive latency delay is provided below.
    sc_time latency(2, SC_NS);
  msg=in.receive(); // in is an OCCN SlavePort
  // msg now available
  addr=occn_hdr(*msg, addr);
  seq=occn_hdr(*msg, seq);
  // managing the payload
  reply(latency); // receive operation is completed,
                  // receiver is synchronized with the transmitter

An example of dynamic delay is given below.
  uint latency=5; // latency expressed in number of bus clock cycles
  msg=in.receive();    // obtain msg with a dynamic delay
  addr=occn_hdr(*msg, addr);
  seq=occn_hdr(*msg, seq);
  latency=delay_function(msg); // latency is dynamic (depending on msg)
  reply(latency); // receive operation is completed,
            // receiver is synchronized with the transmitter

Furthermore, notice that a missing reply to a synchronous send could cause a deadlock,
unless a sender timeout value is provided. In the latter case, we allow that the Pdu
associated with the missing acknowledgment is lost. Notice that a received Pdu is also
lost, if it is not accessed before the corresponding reply.

Sometimes tasks may need to check, enable, or disable Pdu transmission or reception, or
extract the exact time(s) that a particular communication message arrived. These
functions enable optimized modeling paradigms that are accomplished using appropriate
OCCN channel setup and control functions. A detailed description of these functions falls
outside the scope of this document [15].

Another OCCN feature is protocol in-lining, i.e. the low-level protocol necessary to
interface a specific OCCA is automatically generated using the standard template feature
available in C++ enabled by user-defined data structures. This implies that the user does
not have to write low-level communication protocols already provided by OCCN, thus,
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making instantiation and debugging easier. Savings are significant, since in today’s
MPSoC there are 20 or more ports, and 60 to 100 signals per port.

Sender

Receiver

Sender
Overhead

Transmission delay
(size ÷ bandwidth)

Transmission and
Congestion Delay

Propagation
Delay

Receiver
Overhead

Transport Delay

Communication Delay

Figure 12. OCCN asynchronous blocking communication model

Assuming a global clock, Figure 12 illustrates time delays in a pair of communicating
process (sender and receiver) under the packet routing model. Since timing information is
protocol- and architecture-dependent, time delay is not a generic parameter.

Thus, from the side of the sender, we can define:
•  sender overhead refers to sender overheads prior to Pdu transmission, such as a busy

or non-functioning sender or next OCCA network node, or packetization in the send
buffer,

•  transmission delay refers to Pdu transmission, i.e. given the channel bandwidth and
Pdu data size, this can be easily calculated; however, notice that this sender delay
may also include extra time, due to packet admission control and traffic shaping
policies.

Similarly, from the side of the receiver, we can define:
•  propagation delay as the time that it takes one data unit to be transmitted from the

sender to the receiver, and
•  congestion delay refers to additional Pdu delay due to traffic congestion in the OCCN

network, and
•  receiver overhead refers to receiver overheads prior to or during Pdu reception, such

as a busy or non-functioning receiver or previous OCCA network node, or de-
acketization in the receiver buffer.

Figure 13 provides a graphical view of OCCN synchronous communication. A
transmitter process in Module A initiates a Pdu send. Then, after a communication delay
due to sender and receiver overheads, propagation, and congestion, the receiver process
in Module B is able to issue a Pdu receive event. At the same time, or possibly after a
specific delay reflecting receiver process overhead, an acknowledgement is sent back to
Module A to confirm message arrival. Notice that the sender is blocked from the time the
Pdu is sent to the time the Pdu acknowledgment is received.
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3.3 High-Level Performance Modeling

High-level system performance modeling is an essential ingredient in NoC and MPSoC
design exploration and co-design. In this Section, we focus on the design of an object-
oriented system performance modeling library for system-on-chip (SoC) and network-on-
chip design based on SystemC. We discuss how OCCN enables automatic extraction of
statistical metrics for throughput, delay, size, hit ratio and packet loss. We also consider
advanced monitoring features, such as generation, processing, dissemination and
presentation.

3.3.1 OCCN Statistics Interface

3.3.1.1 Automatic Extraction of Statistical Features

System-level modeling using SystemC is an essential ingredient of SoC design flow [53].
Data and control flow abstraction of the system hardware and software components
express not only functionality, but also performance characteristics that are necessary to
identify system bottlenecks. While for software components it is usually the
responsibility of the user to provide appropriate performance measurements, for hardware
components and interfaces it is necessary to provide a statistical package that hides
internal access to the modeling objects. This statistical package can be used for
evaluating SoC performance characteristics. The statistical data may be analyzed online
using visualization software, e.g. the open source Grace tool, or dumped to a file for
subsequent data processing, e.g. via an electronic spreadsheet or a specialized text editor.

For SoC modeling, we usually monitor simple dynamic performance characteristics, e.g.
latency, throughput, and possibly power consumption (switching activity) for obtaining
information on the effectiveness of intra-module computation, and inter-module
communication and synchronization components. Although similar metrics for intra-
module communication and synchronization objects can be defined, these components do
not correspond to unique hardware components, since they may be implemented in
various ways.

Furthermore, for 2D graphs, the statistical API can be based on a possibly overloaded
enable_stat()function that specifies the absolute start and end time for statistics
collection, the title and legends for the x and y axes, the time window for window
statistics, i.e. the number of consecutive points averaged in order to generate a single
statistical point, and the unique (over all modules) object name. Notice that for a
particular statistic, e.g. for read throughput, the basic graph layout (including the title and
x, y axes) is similar, with the legends differentiating only across different objects. Thus,
in order to distinguish the corresponding statistical graphs, the user must provide distinct
names to all modeling objects, even if they exist within different modules.

Since complex systems involve both time-driven (instant) and event-driven (duration)
statistics, we may provide two general monitoring classes, collecting instant and duration
measurements from system components with the following functionality.
•  In time-driven simulation, signals usually have instantaneous values. During

simulation, these values are recorded by calling a library-provided public member
function called stat_write.
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•  In event-driven simulation, recorded statistics for events must include arrival and
departure time (or duration). Since the departure time is known at some point later in
time, the interface can be based on two public member functions.
� First a stat_event_start function call records the arrival time, and saves in a

local variable the unique location of the event within the internal table of values.
� Then, when the event’s departure time is known, this time is recorded within the

internal table of values at the correct location by calling the stat_event_end
function with the appropriate departure time.

Since the above method enables simple and precise measurement, it is useful for
obtaining system performance metrics. The statistics collection based on stat_write
and stat_event_start/end operations may either be performed by the user, or
directly by a specialized on-chip model, e.g. APB, AHB, CoreConnect, and StBus, using
library-internal object pointers.  In the latter case, software probes are inserted into the
source code of library routines, either manually by setting sensors and actuators, or more
efficiently through the use of a monitoring segment which automatically compiles the
necessary probes. Such software probes share resources with the system model, thus
offering small cost, simplicity, flexibility, portability, and precise application
performance measurement in a timely, frictionless manner.

Furthermore, observe that from the above classes representing time- and event-driven
statistics, we may derive specialized classes on which average and instant throughput,
latency, average and instant size, packet loss, and average hit ratio statistics can be based.
Thus, for example, the event-driven statistic class allows the derivation of simple
duration statistics based on an enable_stat_delay library function for Register, FIFO,
memory, and cache objects.

In addition to the previously described classes that cover all basic cases, it is sometimes
necessary to combine statistical data from different modeling objects, e.g. for comparing
average read vs. write access times in a memory hierarchy, or for computing cell loss in
ATM layer communications. For this reason, we need new joint or merged statistic
classes that inherit from time- and event-driven statistics. Special parameters, e.g.
boolean flags, for these joint detailed statistic classes can lead to detailed statistics.

We now describe our general methodology for collecting statistics from system
components.

3.3.1.2 Overview of the OCCN Statistical Classes

Figure 15 illustrates the software components within the OCCN statistical package that
include the following C++ statistical classes:
•  top level, general classes, such as BaseStat and GuiStat (now implemented as a

set of visualization functions),
•  publicly available generic classes, such as StatInstant and StatDuration,
•  derived time-driven and event-driven classes, such as StatInstantAvg,  and

StatInstantCAvg,
•  application-specific functions enabling certain performance metrics, including

StatThroughput, StatDelay, StatSize (and StatInstantSize), StatProb
(and StatInstantProb) classes.
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Figure 15. Statistics Classes in OCCN library

.3.1.3 Top Level Statistical Classes: Gui_Stat & Base_Stat

he gui_stat class is gui-specific, i.e. for the current OCCN version it is targeted to the
race™ environment. This class includes substantial details regarding the parameters for
e graph layout, e.g. title, axis, ticks, legends and viewport, and also the Grace™ socket
terface. However, for the purpose of this document, it is sufficient to say that this class
cludes the necessary routines for visualizing both time-driven and event-driven
atistics.

he base_stat class includes:
 start- and end-time for statistics collection; both times refer to the synchronous system

clock; the warmup time implied by start-time is necessary sometimes, e.g. for starting
measurements after reaching steady state in a dynamic system.

 table of values for storing elements, usually an array,
 the number of statistical samples entered so far,
 a sum of values and/or a cummulative sum of values taken within a time window,
 user-defined boolean flags representing statistical values on the monitored system

parameter; these boolean flags select one or more flags from the following list of
statistical metrics: frequency statistics, such as average, sum, max, min, current value,
and standard deviation, and cummulative statistics, i.e. within a user-specified uniform
time window T, such as e.g. cummulative average, sum, max, min, and standard
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Application-specific public statistics classes:
•  Class StatInstantThroughput derived

from StatInstantAvg
•  StatDelay derived from StatDuration
•  StatInstantSize and StatInstantProb

derived from StatInstant
•  StatThroughput, StatSize, and StatProb

derived from StatInstantCAvg
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deviation; notice that sum is useful, e.g. in computing the total number of packets
received or transmitted by a module,

•  a uniform time window refering to cummulative statistics.
•  user-defined or possibly customized GUI labels, e.g. for 2-dimensional throughput

graphics, the corresponding titles, units, and tick sizes for x and y-axis; notice that this
particular functionality for common graphs, such as frequency statistics for latency and
throughput, may be provided to the user directly (via an extra user-defined flag).

•  a user-defined caption, usually a string describing a particular IP component
instantiated within a user-derived class, e.g. “Mem01_test1” for a statistic test on a
memory named as “Mem01”.

•  user-defined log file(s), i.e. for dumping statistical values; these file names may either
be automatically generated from the user-defined caption above, or be provided
explicitly to the GUI.

•  a cache_size, as a performance enhancement for the statistics package; this refers to
the maximum number of elements to be stored in the internal table of values before
being transferred to the appropriate GUI or flushed to the file.

•  system lock necessary for shared read access to values written by different threads in a
multithreading, different processes in a multiprogramming, and/or different processors
in a parallel or distributed computing environment.

Based on the above description, the C++ implementation of the base_stat class is as
follows.

 #define max_stat_params 11
 #define max_string_size 90

 typedef struct {
    double time, value;
 } stat_entry; // internal table (StatInstant & StatDuration classes)

 typedef struct {
    long int object_ptr;
    double time, value;
 } stat_entry_lib; // internal cache StatDurationLib Class
                  // for implementing  event_driven functions

 class base_stat {
  public:
    // functions defining start/end of statistics collection
    void start_stat_time(double _start);
    void end_stat_time(double _end);

    bool is_activated; // non-zero flag for user-selected statistics

    unsigned int get_id (); // get id of class instance

    // user-defined boolean flags for user-selected statistics
    enum {
      FREQ_STAT_AVG=2, FREQ_STAT_SUM=4, FREQ_STAT_CURR=4,
      FREQ_STAT_MAX=8, FREQ_STAT_MIN=16, FREQ_STAT_STDV=32,
      CUMM_STAT_AVG=64, CUMM_STAT_SUM=128, CUMM_STAT_MAX=128,
      CUMM_STAT_MIN=256, CUMM_STAT_STDV=512};

 protected:
    double start_time, end_time; //start&end-time for stat collection
    unsigned int stat_param_flag; //OR of user-provided boolean flags
    unsigned int cache_size; // cache size for dumping data
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    unsigned long no_samples; // number of statistical samples

    double avg_time,        // average time for averaging time values
           sum,             // sum
           cummulative_sum; // cummulative sum within time_window
    unsigned int time_window; // time_window for cummulative stats

    //constructor (user-defined cache_size & time_window)
    base_stat(unsigned int_cache_size, unsigned int _time_window);

    // destructor of base class
    ~base_stat();

    char *activate_stats(unsigned int _flag);//Ors flags for file&GUI
    char *string_gen_tbl[max_stat_params]; //table with filenames
    stat_entry *cache_table; // table (periodically flushed to file)
    int cache_table_ptr; // pointer to cache_table for next entry

  private:
     static unsigned int filename_counter; // unique file identity
    static unsigned int counter_id; // count number of instances
    unsigned int instance_id // id of class instance
    // In the base class we may also define:
    // mutex lock; // to enable shared access to variables
    // user-defined log file(s)
    // additional user-defined or possibly customized GUI labels
    // user-defined captions identifying IP components
 };

3.3.1.4 Time-driven and Event-Driven Statistic Classes

Performance metrics help identify system bottlenecks by recording instant values
commonly in time-driven simulation, and duration values usually in event-driven
simulation. OCCN provides a statistical package based on two general monitoring classes
for collecting instant and duration performance characteristics from on-chip network
components with the following functionality. Both derived classes are fully-accessible by
the user and inherit from the base class base_stat. Notice that the constructor for the
base_stat class is protected, thus the base class cannot be directly instantiated.

In time-driven simulation, signals usually have instantaneous values. that must be
recorded during simulation. During simulation, these values are recorded by calling a
library-provided public member function called stat_write.
•  stat_write (double time, double value).

In event-driven simulation, recorded statistics for events must include an arrival and a
departure time. Since the departure time is known at some point later in time, we propose
an interface which is based on two public stat_event_start and stat_event_end
functions. Thus, first the user invokes an
•  a = int stat_event_start(double arrival_time)
command to record the arrival time and save in variable a the unique location of the
event within the internal table of values. Then, when the event’s departure time is known,
this is recorded within the internal table of values at the correct location, by invoking a
call to
•  void stat_event_end(double departure_time, a).
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Notice that the event duration can be readily obtained from the above two values. Using
Grace™ this computation can be performed very efficiently using the Edit data
sets: create_new (using Formula) option.

Since complex systems may involve both time-driven (instant) and event-driven
(duration) statistics, we provide the StatInstant and StatDuration classes which
inherit properties from the top-level classes and provide the functionality described
above. The interface for these classes is described below. Implementation is slightly
complicated due to the _time_window parameter. The precise implementation will be
explained in the next release of this manual.

#define MAX_STRING_SIZE 64
class StatInstant : public base_stat {
  public:
    // constructor for time-driven (instant) stats
   StatInstant (unsigned int _cache_size,
                unsigned int _time_window);

    // class destructor
    ~StatInstant();

    // this function calls base_class::activate_stats
    // for setting parameter flag for user-selected statistics
    // it also appends a user-defined string to the filenames
    FILE* activate_stats(unsigned int _flag,
    const char *_function_name, const char *_user_string);

    // the following statistics update function stores at the
    // next available location in cache_table two values:
    // a) usually the simulation time and
    // b) the corresponding statistical value at this time
    void stat_write(double _time, double _value);

    // next function provides data to the gui or flushes
    // to a file (in cummulative form, if time_window > 1)
    void stat_write_to_gui(double _time, double _value);

    // other gui-specific functions (not implemented yet)
    // void enable_gui_instant();
    // void disable_gui_instant();

private:
    // file pointer used for dumping statistics (ASCII format)
    FILE *fp;
    // file name for printing statistics
    char fname[MAX_STRING_SIZE];
 };

class StatDuration : public BaseStat {

  public:
    // class constructor for event-driven (duration) statistics
    StatDuration(unsigned int _cache_size,
                 unsigned int _time_window);

    // class destructor
    ~StatDuration();
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    // the next function calls base_class::activate_stats for
    // setting parameter flag for user-selected statistics and
    // appends a user-defined string to the filenames created
    FILE* activate_stats(unsigned int _flag,
               const char *_function_name,
               const char *_user_string);

    // the following function records the arrival, i.e. it
    // stores the arrival time in cache_table and returns
    // the corresponding _index within the cache_table
    int stat_event_start(double _time);

    // the following function records the arrival, i.e. it
    // stores the departure time at cache_table[_index]
    // and returns the associated  arrival time (if any)
    double stat_event_end(double _time, int _index);

    // other gui specific functions (not implemented yet)
    // void enable_gui_duration();
    // void disable_gui_duration();

  private:
    // file pointer used for dumping statistics (ASCII format)
    FILE *fp;
    // file name for printing statistics
    char fname[MAX_STRING_SIZE];

    // counter of pending events, i.e. events with recorded
    // arrival time, but unknown yet departure time
    unsigned int no_pending_events;
};

Finally, notice that for the StatDuration class there is a corresponding internal OCCN
library StatDurationLib class with the same functionality. However, this class
performs the basic stat_event_start/end operations using (unknown to the user)
internal OCCN library object pointers. Thus, stat_event_start/end operations also
take into account memory address in order to compute duration for subsequent, e.g.
read/write accesses to the same memory address.

Thus, in this case, upon an event arrival, we invoke the command
•  void stat_event_start(long int MemAddr, double arrival_time);
to record in the next available location within the internal table:
a) the current memory address (MemAddr),
b) the arrival time (arrival_time), and
c) an undefined (-1) departure time.

Then, upon an event departure, we invoke the command
•  void stat_event_end(long int MemAddr, double departure_time);
to search for the current MemAddr in the internal table of values, and update the entry
corresponding to the undefined departure time.

The StatDurationLib class allows for simple duration statistics based on the
enable_stat_delay OCCN library function for various memory objects providing
read/write access, e.g. FIFO objects, Memory, Cache and inter-module communication
objects.
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3.3.1.5 Statistic Classes for Throughput, Latency, Size, and Cell Loss

There are two very common performance metrics for evaluating system performance.
•  Throughput refers to the average number of bytes routed through the component per

clock cycle. Sometimes throughput is normalized by the maximum possible
throughput.

•  Latency refers to the average delay through the component, measured from arrival
time of the first message bit to departure time of the last message bit. Latency may
include various delays, such as link propagation delay, queuing time, as well as
arbitration time.

As described above the application user interface for the statistical functions includes the
base class called base_stat and gui_stat, as well as two inherited public classes:
StatInstant and StatDuration.

class StatInstantAvg: public StatInstant {
public:
 StatInstantAvg(unsigned int _cache_size,
                unsigned int _time_window):
                        StatInstant(_cache_size, _time_window),
                        bytes_counter(0.0)
 {};

 void StatInstantAvg::stat_write(double _time, double _value) {
  // case 1: if current time < start time, then do nothing!
  if (_time < start_time) return;
  // keep point only if time > start_time
  if ((_time-start_time) != 0)
    StatInstant::stat_write(_time,
              (bytes_counter += _value)/(_time-start_time));
 };

 private:
    double bytes_counter;
};

class StatInstantCAvg: public StatInstant { // cummulative avg
public:
  StatInstantCAvg(unsigned int _cache_size,
                  unsigned int _time_window):
                          StatInstant(_cache_size, _time_window),
                          old_cum_sum(0.0),
                          total_no_samples(0)
  {};

 void StatInstantCAvg::stat_write(double _time, double _value) {
   // case 1: if time < start time, then do nothing
   if (_time < start_time) return;

   if (time_window <= 0) { // error: negative time_window
      fprintf(stderr, "Stats error: time_window (%d) is <0 \n",
                                                    time_window);
      exit(1);
   }
   else if (time_window > (no_samples +1)) { // collect data
      no_samples++;
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      cum_sum = cum_sum + _value;
      avg_time = avg_time + _time;
  } else if (time_window == (no_samples +1)) {
      // collect & output data (time_window finished)
      //compute and send to gui average time and value
      no_samples++;
      cum_sum = cum_sum + _value;
      avg_time = avg_time + _time;
      total_no_samples++;
      old_cum_sum = ((total_no_samples -1) * old_cum_sum +
                      cum_sum/ no_samples)/total_no_samples;
      stat_write_to_gui(avg_time/ no_samples, old_cum_sum);
      no_samples = 0;
      cum_sum = 0;
      avg_time = 0;
    } else { // errors: (possible case listed)
      fprintf(stderr, "Stats error, e.g. no_samples (%lu)”,
              “> time_window (%d) \n", no_samples, time_window);
      exit(1);
    }
  };

 private :
    double old_cum_sum;
    unsigned int total_no_samples;
};

Using derived classes from StatInstant and the StatDuration class that represent
time- and event-driven statistics, we can derive the application-specific classes instant
throughput (cummulative average over only a time window), cummulative throughput
(cummulative average over many consecutive time windows) and latency statistics:
StatInstantput, StatThroughput and StatDelay. For these classes, we provide
enable functions in order to initialize parameters, such as the absolute start and end time
for statistics collection, the title and legends for the x and y axes, and the time window
for window statistics. We also provide a boolean flag for stopping or resuming statistics
collection during execution.

  class StatInstantThroughput : public StatInstantAvg {
  public:
    StatInstantThroughput(unsigned int _cache_size,
                          unsigned int _time_window)
                 : StatInstantAvg(_cache_size, _time_window),
                   STATS_WANTED_INSTANT_THROUGHPUT(0)
    {};
    StatThroughput::~StatThroughput() {};
    void enable_stat_instant_throughput(const double start = 0,
                                        const double end = DBL_MAX,
                                        const long int time_window =1,
                               const char* x_axis = "Simulation Time",
                            const char* y_axis = "Instant Throughput",
                            const char* object_name = "Undefined Name");
    bool STATS_WANTED_INSTANT_THROUGHPUT;
  };

class StatThroughput : public StatInstantCAvg {

public:
    StatThroughput:: StatThroughput(unsigned int _cache_size,
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                                    unsigned int _time_window) :
                           StatInstantCAvg(_cache_size, _time_window),
                           STATS_WANTED_THROUGHPUT(0),
                           bytes_counter(0.0)
    {};
    StatThroughput::~StatThroughput() {};
    void enable_stat_throughput(const double start=0,
                                const double end= OCCN_UINT64_MAX,
                                const long int time_window =1,
                                const char* x_axis = "Simulation Time",
                  const char* y_axis = "Cummulative Window Throughput",
                            const char* object_name = "Undefined Name");
    void StatThroughput::stat_write(double _time, double _value);
    bool STATS_WANTED_THROUGHPUT;

private :
    double bytes_counter; // for computing bytes per sec
};

  class StatDelay : public StatDuration {
  public:
    StatDelay(unsigned int _cache_size, unsigned int _time_window)
            : StatDuration(_cache_size, _time_window),
              STATS_WANTED_DELAY(0)
    {};

     void enable_stat_delay(const double start=0,
                            const double end= DBL_MAX,
                            const char* x_axis = "Arrival Time",
                            const char* y_axis = "Departure Time",
                            const char* object_name = "Undefined Name");
     bool STATS_WANTED_DELAY;
};

The StatInstantSize and StatSize classes may be used to provide application
statistics for instant size (cummulative average over only a time window) and
cummulative size (cummulative average over many consecutive time windows) of
counter-based objects, such as FIFO, LIFO, and circular FIFO objects. Each class
provides an enable function for initializing parameters, such as absolute start and end
time for statistics collection, title and legends for the x and y axes, and time window for
window statistics, and a boolean flag for stopping or resuming statistics collection during
execution.

 Statclass StatInstantSize : public StatInstant {
 public:
   StatInstantSize(unsigned int _cache_size,unsigned int _time_window
                : StatInstant(_cache_size,_time_window),
                  STATS_WANTED_INSTANT_SIZE(0)
   {};

   void enable_stat_instant_size(const double start=0,
                                 const double end= DBL_MAX,
                                 const long int time_window =1,
                                 const char* x_axis = "Simulation Time",
                                 const char* y_axis = "Instant Size",
                            const char* object_name = "Undefined Name");

   bool STATS_WANTED_INSTANT_SIZE;
  };
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  class StatSize : public StatInstantCAvg {
  public:
    StatSize(unsigned int _cache_size, unsigned int _time_window)
           : StatInstantCAvg(_cache_size, _time_window),
             STATS_WANTED_SIZE(0)
    {};

    void enable_stat_size(const double start=0,
                          const double end= DBL_MAX,
                          const long int time_window =1,
                          const char* x_axis = "Simulation Time",
                        const char* y_axis = "Cummulative Window Size",
                        const char* object_name = "Undefined Name");

    bool STATS_WANTED_SIZE;
  };

The StatInstantProb and StatProb provide instant ratio (cummulative average
over only a time window) and cummulative ratio (cummulative average over many
consecutive time windows) of counter-based objects, with a binary (either 0 or 1)
instantaneous counter value, as is common with hit ratio and cell loss probability
application statistics. Both statistics classes define a corresponding enable function and a
boolean flag used as described before.

  class StatInstantProb : public StatInstant {
  public:

    StatInstantProb(unsigned int _cache_size,unsigned int _time_window)
                   : StatInstant(_cache_size,_time_window),
                     STATS_WANTED_INSTANT_PROB(0)
    {};

    void enable_stat_instant_prob(const double start=0,
                                  const double end= DBL_MAX,
                                  const long int time_window =1,
                                const char* x_axis = "Simulation Time",
                           const char* y_axis = "Instant Probability",
                           const char* object_name = "Undefined Name");

    bool STATS_WANTED_INSTANT_PROB;
  };

  class StatProb : public StatInstantCAvg {
  public:
    StatProb(unsigned int _cache_size, unsigned int _time_window)
         : StatInstantCAvg(_cache_size, _time_window),
           STATS_WANTED_PROB(0)
    {};

    void enable_stat_prob(const double start=0,
                          const double end= DBL_MAX,
                          const long int time_window =1,
                          const char* x_axis = "Simulation Time",
                const char* y_axis = "Cummulative Window Probability",
                          const char* object_name = "Undefined Name");
    bool STATS_WANTED_PROB;
  };
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The use of the above classes is described in detail below.

At first, let us define a statistical object for measuring throughput during read access from
a memory module called "stat_memory".
  StatThroughput ThroughputRead(1, 1); // cache size 1, time window 1

Then, an appropriate enable routine is called to initialize simulation and graphics
parameters, such as the absolute start and end time for statistics collection, time window
for window statistics, title and legends for the x and y axes. Furthermore, within this
enable routine, the boolean flag (STATS_WANTED_THROUGHPUT) for statistics collection
during execution is set to true, and also time_window may be overriden (see below).
  ThroughputRead.enable_stat_throughput(0, 1000, 2, // time window = 2
 "Simulation Time","Average Throughput for Read Access", "stat_memory");

An example of the use of the object ThroughputRead for statistics collection is shown
below. The values for current time and number of bytes read from the memory module
are recorded with the stat_write function.
  if (ThroughputRead.STATS_WANTED_THROUGHPUT)
    ThroughputRead.stat_write((N_uint64)
             (sc_time_stamp().to_default_time_units()), no_bytes_read);

A statistical object for measuring latency during successive write/read accesses from a
memory module called "stat_memory" may be defined as follows.
  StatDelay WriteReadDelay(1, 1); // cache size 1, time window 1

 // equivalent representation: StatDuration stat_memory(1000,1);

Then, an appropriate enable routine is called to initialize simulation and graphics
parameters, such as the absolute start and end time for statistics collection, time window
for window statistics, title and legends for the x and y axes. Furthermore, within this
enable routine, the boolean flag (STATS_WANTED_DELAY) for statistics collection during
execution is set to true.
  WriteReadDelay.enable_stat_delay(0, 1000, "Arrival Time",
                                      "Departure Time", "stat_memory");

An example of the use of the object WriteReadDelay for statistics collection is shown
below. Notice the use of the stat_event_start and stat_event_end functions in
order to save the current time (and obtain the id) or current time and number of bytes read
from the memory module are recorded with the stat_write function.
  // step 1: Calling stat_event_start
  int id;
  if (WriteReadDelay.STATS_WANTED_DELAY)
    id = WriteReadDelay.stat_event_start(
                  (N_uint64)(sc_time_stamp().to_default_time_units()));
  // step 2: Calling stat_event_end
  if (WriteReadDelay.STATS_WANTED_DELAY)
    (void) WriteReadDelay.stat_event_end(
              (N_uint64)(sc_time_stamp().to_default_time_units()), id);

For other statistics classes, definition and use of the statistics is similar to the above two
cases. For more details on the use of all statistics classes and the capability of online
statistical graphs, the reader is referred to the corresponding statistical testbenches that
accompany the OCCN library.  However, notice that for the StatInstant (and
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StatDuration) classes there are no enable functions, and instead the following base
functions are used.
  StatInstant s1(1000,1);
  // similar for StatDuration
  s1.activate_stats(BaseStat::FREQ_STAT_CURR,"str1","uniq_number");
  s1.start_sim_time(0);
  s1.end_sim_time(100);
  // title and legends are defined in the appplication-dependent
  // online visualization function (see statistic testbenches)

In addition to the previously described classes which cover all basic cases, it is
sometimes necessary to combine statistical data from different IP components, e.g. from
two different memory units in order to compare average read vs. write access times. For
this reason, we need new joint or merged statistic classes that inherit from the Instant and
Duration classes. Parameters, e.g. necessary boolean flags, for these joint statistic classes
will be examined in a future issue of this document.

Furthermore, an extension to an asynchronous environment would require introducing a
new asynchronous statistics class with the necessary abstract data types to support
waves, concurrency map data structures and system snapshots.

Finally, within the parallel and distributed domain, it is possible that simulation metrics
must be combined together with platform performance indicators which focus on
monitoring system statistics (e.g. simulation speed, computation and communication
load) for improving system performance, e.g. through dynamic load balancing.

3.3.2 Advanced Monitoring Features

Conventional text output and source-code debugging are inadequate for monitoring and
debugging complex and inherently parallel SoC models. Similarly, current tools, such as
the Synopsys Cocentric Studio can generate vcd files for signal tracing, or build
relational databases in the form of tables, for data recording, visualization, and analysis.
However, extensive SoC performance-modeling environments may be based on advanced
monitoring issues.

In this Section, we consider monitoring activities appropriate for system level
performance modeling. Although these activities may correspond to distinct monitoring
phases occurring in time sequence, potentially there is partial overlap between them.
•  Generation refers to detecting events, and providing event and status reports

containing traces (or histories) of system activity.
•  Processing refers to functionality that deals with monitoring information, such as

merging of traces, validation, filtering, analysis, correlation, and model updating.
These functions mainly focus on converting raw and low-level monitoring data to the
required format and level of detail.

•  Dissemination concerns the distribution of selected monitoring reports to application
users, managers, and processing entities.

•  Presentation refers to processing and displaying monitoring information to the users
in an appropriate form.



OCCN USER MANUAL  – V1.0.1                                                               14 OCTOBER, 2003

OCCN SOFTWARE LICENSE: GNU GPL                                                         PAGE  40 OF  64

In addition to the above four main activities, implementation issues relating to
intrusiveness and synchronization constitute a fifth dimension that is crucial to the design
and evaluation of monitoring activities.

3.3.2.1 Generation of Monitoring Traces

A status report contains a subset of system state information, including object properties,
such as time stamp and identity. This report can be generated either periodically, i.e.
based on a predetermined FSM or Thread schedule, or on demand, i.e. upon receiving a
request for solicited reporting. Notice that the request may itself be periodic, i.e. via
polling, or on a random basis. Thus, appropriate status reporting criteria define the
reporting scheme, the sampling rate, and the contents of each report.

Detection of event occurrences may be immediate, i.e. detected upon occurrence, or
delayed. For example, signals on an internal bus of a node may be monitored in real-time,
while alternatively, status reports may be generated, stored and used to detect events at
some later time. Event detection may also be internal to the object, i.e. typically
performed as a function of the object itself, or external, i.e. performed by an external
agent who receives status reports and detects changes in the state of the object. Once the
occurrence of an event is detected, an event report is generated. In general, an event
report contains a variable number of attributes such as the event identifier, type, priority,
time of occurrence, the state of the object immediately before and after event occurrence,
and other application-specific state variables, time stamps, text messages, and possibly
pointers to other detailed information.

In order to describe the dynamic behavior of an object or group of objects over a period
of time, status and event reports are recorded in time order, as monitoring traces. A
complete monitoring trace contains all monitoring reports generated by the system since
the start of the monitoring session, while a segmented trace is a sequence of reports
collected during a limited period of time. A trace may be segmented due to overflow of a
trace buffer, or deliberate halting of trace generation that results in the loss, or absence of
reports over a period of time.

Notice that within each trace we need to identify the reporting entity, the monitored
object, and the type of the report, including user-defined parameters, e.g. start- and end-
time, time-window, priority, and size. Thus, user-selected parameters may provide
browsing or querying facilities (by name or content), dynamic adjustment (during
runtime) of event occurrence interval, adjustment of intervals before or between event
occurrences, and examination of the order of event occurrence. A monitoring trace may
also be used to generate non-independent traces based on various logical views of objects
or system activity.

3.3.2.2 Processing of Monitoring Information

A SoC model may generate large amounts of monitoring information. The data collection
phase is only useful, if the data can be used to identify problems and provide corrective
measures. Thus, the data collection phase is split into four different phases.

Validation of monitoring information provides validity checks, possibly specified in a
formal language, ensuring that the system has been monitored correctly. This includes
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•  sanity tests based on the validity of individual monitoring traces, e.g. by checking for
correct token values in event fields, such as an identity, or time stamp, and

•  validation of monitoring reports against each other, e.g. by checking against known
system properties, including temporal ordering.

Filtering minimizes the amount of monitoring data to a suitable level of detail and rate.
For example, filter mechanisms reduce the complexity of displayed process
communications by
•  incorporating a variable report structure,
•  displaying processes down to a specified level in the module hierarchy,
•  masking communication signals and data using filter dialogs, and
•  providing advanced filter functionality for displaying only tokens with

predetermined values.

Analysis processes monitoring traces based on special user-selected criteria. Since
analysis is application-dependent, it relies on sophisticated stochastic models involving
combinatorics, probability theory, and Markov chain theory. Analysis techniques enable
•  simple data collection, such as computing average, maxima, and variance values of

particular state variables,
•  statistical trend analysis for forecasting using data analysis packages, such as Maple,

Grace, SAS, or S from AT & T may be used, and
•  correlation of event reports, e.g. for identifying system bottlenecks.

Correlation of monitoring information (also called merging, combination or composition)
raises the abstraction level. Together with filtering, it prevents the users from being
overwhelmed by an immense amount of detailed information. Thus, for example, events
generated by sensors or probes may be combined using and, or, and not operators to
provide appropriate high-level reliability metrics. Since, correlation of SoC monitoring
information is a very challenging task, a relational database, such as mini-SQL, that
includes selection, projection, and join operators is sometimes useful.

3.3.2.3 Dissemination of Monitoring Information

Monitoring reports would have to reach human users, manager, and processing entities.
Dissemination schemes range from very simple and fixed, to very complex and
specialized. Selection criteria contained within the subscription request are used by the
dissemination system to determine which reports (and with what contents, format, and
frequency) should be delivered. This requires implicit filtering, since only the requested
reports are forwarded.

3.3.2.4 Presentation of Monitoring Information

Various visualization techniques may be provided by a user friendly monitoring interface.

Textual representation involves presentation of monitoring information in text form. This
technique increases its expressive power, by providing appropriate indentation, color and
highlighting to distinguish monitoring information at different abstraction levels. Events
may be displayed in a causal rather than temporal order by including parameters, such as
•  event type,
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•  name of process initiating the event,
•  name of process(es) handling the event, and
•  contents of transmitted messages.

A time-process diagram is a 2D diagram illustrating the current system state and the
sequence of events leading to that state. The horizontal axis represents events
corresponding to various processes, while the vertical one represents time. In
synchronous systems, the unit of time corresponds to a period of actual time, while in
asynchronous systems, it corresponds to an occurrence of an event. In the latter case, the
diagram is called concurrency map, with time dependencies between events shown as
arrows. An important advantage of time-process diagrams is that monitoring information
can be presented either on a simple text screen, or on a graphical one.

An animation captures a snapshot of the current system state. Both textual and graphical
event representations, e.g. input, output, and processing events, can be arranged in a 2D
display window. Graphical representations use various formats, such as icons, boxes,
Kiviat diagrams, histograms, bar charts, dials, X-Y plots, matrix views, curves, pie charts,
and performance meters. Subsequent changes in the display occur in single step or
continuous fashion and provide an animated view of system evolution; for online
animation, the effective rates at which monitoring information is produced and presented
to the display must be matched. For each abstraction level, animation parameters include
enable/disable event monitoring or visualization, select clock precision, monitoring
interval, or level of detail, and view or print statistics.

3.3.2.5 Other Important Monitoring Design Issues

Although the above monitoring techniques are useful, specifications for the actual
graphical user interface of the monitoring tool depend on the imagination, experience,
and available time of the designer. We present here some desirable features that a SoC
monitoring interface should possess.
•  Visualization at different abstraction levels enables the user to observe behavior at

various abstraction levels, e.g. per object, per block, or per system. This stepwise
refinement technique allows the user to start observation at a coarse level and
progressively (or simultaneously) focus on lower levels. At each level, application
and system metrics may be presented in appropriate easy-to-read charts and graphs,
while the communication volume among subsystems (or power consumption) may be
visualized by adjusting the width (or color) of the lines interconnecting the
corresponding modules.

•  A history function visualizes inherent system parallelism by permitting the user to
� scroll the display of events forwards or backwards in time by effectively changing

a simulated system clock, and
� control the speed at which system behavior is observed using special functions for

start/stop and pause/restart event display, single-step or continuous animation, and
real-time or slow-motion animation.

•  Visibility of interactions enables the user to dynamically visualize contents of a
particular communication message, component data structure, system or network
configuration, or general system data, such as log files, or filtering results.

•  Placement of monitoring information greatly enhances visibility and aids human
comprehension. Placement may either be automatic, i.e. using computational
geometry algorithms, or manual by providing interface functions, e.g. for moving or
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resizing boxes representing monitoring objects or system events, or moving coupled
links representing process communication.

•  Multiple views use multiple windows representing system activities from various
points of view, thus providing a more comprehensive picture of system behavior.

•  Scalable monitoring focuses on efficient computation and communication practices.
Scalability refers to the ability of monitoring large-scale models, with tens or
hundreds of thousands of objects as in telecommunication networks. Large-scale
monitoring implementations could benefit from POSIX- or System V message
queues, or non-blocking and blocking concurrent queues [33, 40] that achieve high
degree of concurrency at low implementation cost compared to other general methods
[44, 55].

In addition, the monitoring system designer should focus on the problems of
intrusiveness and synchronization occurring in distributed system design.
•  Intrusiveness refers to the effect that monitoring may have on the monitored system

due to sharing common resources, e.g. processing power, communication channels,
and storage space. Intrusive monitors, may lead not only to system performance
degradation, e.g. due to increased memory access, but also to incorrect results due to
event reordering which may in turn lead to data races and possible system deadlocks,
e.g. when evaluating symmetric conditions which result in globally inconsistent
actions.

•  Distributed systems are more difficult to monitor than centralized systems because of
parallelism among processes or processors, random and non-negligible
communication delays, possible process failures, and unavailable global synchronized
time. These features cause various interleavings of monitoring events which might
result in different results from repeated runs of the same (deterministic) distributed
algorithm, or different views of execution events from various objects of the
execution events in the same distributed algorithm [11, 12, 23, 39]. Notice however,
that these problems do not occur with SystemC scheduling, since current versions of
the kernel are sequential, offering only simulated parallelism and limited event
interleaving.



OCCN USER MANUAL  – V1.0.1                                                               14 OCTOBER, 2003

OCC

4. Case-Study: OCCN Communication Refinement

In this Section, we provide a producer/consumer and a simple, transport layer, inter-
module data transfer protocol. For the transport layer model, after explaining the
implementation with reference to an OCCN generic channel, we illustrate OCCN inter-
module communication refinement using the configurable STBus NoC. We also provide
several examples that highlight OCCN high-level system performance modeling. An
example illustrating high-level system power modeling is under development.

4.1 The Producer/Consumer

The following example illustrates the methods discussed for MasterPort and
SlavePort interfaces. It consists of a synchronous transmitter and receiver. This
example counts the number of words in the standard input, separated by space, tab, and
newline characters. The application is implemented using two threads. Both threads use
the new function provided by the port to avoid making copies of messages between thread
and channel.
•  The producer thread generates a finite number of input characters and sends them

through a channel to the consumer thread.
•  Concurrently, the consumer thread takes characters out of the channel and counts the

number of words until the input steam is exhausted.

The code for the transmitting and receiving thread are provided below.

#inc

prod
{SC_

void
  ch
  Pd
  ms
  if
    
  wh
    
    
  }
  de
} //
producer.h

#include “occn.h” // include message definitions

class producer : public sc_module {
  public:
    producer(sc_module_name name);
    MasterPort<Pdu<char> > out; // communication port
    SC_HAS_PROCESS(producer);

  private:
     void read();
};
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producer.cc
lude “producer.h”

ucer::producer(sc_module_name name) : sc_module(name)
THREAD(read);}

 producer::read() {
ar c;
u<char>* msg;
g = new(&out) Pdu <char>; // channel allocation
 (! msg)
OCCN_end_sim(-1,"Error during Packet allocation");
ile (cin.get(c)) { // producer sends c
   *msg= c;
   out.send(msg);

lete msg;
 after the send msg is not usable
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Notic
copy
terms
using
provi
using

#inc
clas
  pu
    
    
    

  pr
    
    
};

}

consumer.h

lude "occn.h"
s consumer : public sc_module { // class description
blic:
consumer(sc_module_name name);
SlavePort<Pdu<char> > in; // communication port
SC_HAS_PROCESS(consumer);

ivate:
 void count();
 int counter;

c

#include "consumer.h"
consumer::consumer(sc_module_name name) : sc_module(name),
                                          counter(0)
{SC_THREAD(count);}
void consumer::count() {
    bool word_complete=false;
    Pdu<char> * msg;
    while (1) {
        msg = *in.receive(); // receive will allocate the storage
        //cout << "consumer receives " << msg->body << endl;
        switch (msg) {
            case  ' ' :
            case '\t' :
              if (word_complete) {
                counter++;
                word_complete = false;
              }
              break;
            case '\n' :
              if (word_complete) counter++;
              cout << "Total: "<< counter << " words" << endl;
              OCCN_end_sim(0,"SUCCESS");
              break;
            default:
              word_complete = true;
              break;
        }
        in.reply();

   }
consumer.c
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e that since the Pdu msg belongs to the transmitter, the send function makes a local
 before sending the Pdu through the channel. Since local copies are a drawback in
 of simulation speed, we let the channel manage creation and destruction of Pdus
 the placement feature available in C++ for the standard new function. Therefore we
de an overload for the operator new that takes as second argument a MasterPort,
 the function void* operator new(size_t nbytes, MasterPort<…>& port).



OCCN USER MANUAL  – V1.0.1                                                               14 OCTOBER, 2003

O

This function allocates runtime storage returning a pointer to the newly allocated Pdu.
Since in most cases, one caller manages transmission, the new function supports single-
element dynamic allocation for efficient implementation. Thus, for allocating packet
memory within a channel bound to a port called out, we call the operator new.
 Pdu<…> * pk = new(&out) Pdu<…>;

Furthermore, notice that the compiler calls the overloaded operator new with parameters
sizeof(Pdu<…>) and out.

Since Pdus belong to the caller, their destruction is under the responsibility of the caller.
Thus, the transmitter must destroy the msg using delete However,  in order in order to
deallocate a previously allocated Pdu<…> object within the channel, the operator delete
is called automatically by the channel before the context switch of the current task.

4.1.1 Top-Level Module Instantiation and Port Binding

The standard channel interface (described in “StdChannel.h”) is the most basic channel
for point to point, bi-directional inter-module communication. This channel essentially
models circuit switching, since once a module prepares its signals and/or data, this
information always becomes available to the connected module during the next clock
cycle. The user currently has no control to change the number of cycles required for the
transfer. Furthermore, there is no maximum data size on the Pdu to be transmitted
through this channel.

Figure 16. IP module components: behavior and inter-module communication

Here is an example of top-level module instantiation and port binding with the
StdChannel. The binding represents the architecture shown in Figure 16.

main.cc

my_module_3
My_Module_1

my_prod
My_Module_2

my_cons

OCCA
#include “occn.h”
#include "producer.h"
#include "consumer.h"
int main() {
    // clock, modules, and bus declaration
    sc_clock clock1("clk",10,SC_NS);
    producer my_prod("Master");
    consumer my_cons("Slave");

    // channel instantiation
    StdChannel<Pdu<char>,Pdu<char> > channel("channel");

    // module binding
    channel.clk(clock1);

    // bus configuration (operations dependent on the model)
    my_prod.out(channel);
    my_cons.in(channel);
    sc_start(-1);
    return -1;
}
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4.2 A Transport Layer Inter-Module Data Transfer Protocol

This Section provides a case study for OCCN methodology, focusing on the user point of
view. This example shows how to develop the Adaptation Layer on top of the basic
OCCN Communication API consisting of the MasterPort and SlavePort classes (see
Figure 11). Using layered OCCN communication architecture, with each layer
performing a well-specified task within the overall protocol stack, we describe a
simplified transport layer, inter-module transfer application from a transmitter to a
specified receiver. The buffer that has to be sent is split into frames.  Thus, the
TransportLayer API covers the OSI stack model up to the transport layer, since it
includes segmentation. This API consists of the following basic functions.
•  void TransportLayer_send(uint addr, BufferType& buffer); The

destination address addr identifies the target receiver and the buffer to be sent. The
BufferType is defined in the inout_pdu.h code block using the OCCN Pdu object.

•  BufferType* TransportLayer_receive(); This function returns the received
buffer data.

NoC is becoming sensitive to noise due to technology scaling towards deep submicron
dimensions [5]; Thus, we assume an unreliable channel and a simple stop-and-wait data
link protocol with negative acknowledgments, called Automatic Repeat reQuest (ARQ),
is implemented [31, 54]. Using this protocol, each frame transmitted by the sender (I-
frame) is acknowledged by the receiver with a separate frame (ACK-frame). A timeout
period determines when the sender has to retransmit a frame not yet acknowledged.

The I-frame contains a data section (called payload) and a header with various fields:
•  a sequence number identifying an order for each frame sequence; this information is

used to deal with frame duplication due to retransmission, or reordering out-of-order
messages due to optimized, probabilistic or hot-potato routing;  in the latter case,
messages select different routes towards their destination [28];

•  a destination address field related to routing issues at Network Layer;
•  an EDC (Error Detection Code) enabling error-checking at the Data Link Layer for

reliable transmission over an unreliable channel [59], and
•  a source_id identifying the transmitter for routing back an acknowledgment.

The ACK-frame sent by the receiver consists of only a header, with the following fields:
•  a positive or negative ack field that acknowledges packet reception according to the

adopted Data Link protocol, and
•  a source_id identifying the receiver where to route the acknowledgment.

A frame is retransmitted only if the receiver informs the sender that this frame is
corrupted through a special error code.

From the transmitter (Tx) side, the ARQ protocol works as follows.
•  Tx.1: send an I-frame with a proper identifier in the sequence field.
•  Tx.2: wait for acknowledgment from the receiver until a timeout expires;
•  Tx.3: if the proper acknowledgment frame is received, then send the next I-frame,

otherwise re-send the same I-frame.

From the receiver (Rx) point of view, the ARQ protocol works as follows.
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•  Rx.1: wait for a new I-frame from the Tx.
•  Rx.2: detect corrupted frames using the sequence number (or possibly EDC).
•  Rx.3: send a positive or negative ACK-frame based on the outcome of step Rx.2.

For simplifying our case-study, we assume that no data corruption occurs during the
acknowledgment exchanges. EDC is provided for a future more complex implementation.

4.2.1 Implementation using the OCCN StdChannel

Figure 17 illustrates OCCN implementation of our transport layer protocol, using inter-
module communication between two SystemC modules (Transmitter and Receiver)
through a synchronous, point-to-point OCCN channel called StdChannel. This channel
implements the timeout capability (see Section 4.1) and random packet loss by emulating
channel noise.

Transmitter

Process
action_tx

Port

Process
action_rxChannel

API

Communication API

Adaptation Layer

Application API

Receiver

Port

API

OCCN StdChannel

Figure 17. Transport Layer send/receive implementation with OCCN StdChannel

The StdChannel is accessed through the OCCN Communication API defined in Section
3.2, while the Transmitter and Receiver modules implement the higher-level Application
API defined in Section 4.1. This API is based on Adaptation Layer classes MasterFrame,
and SlaveFrame, specialized ports derived from MasterPort and SlavePort, respectively
(see Figure 18). This SystemC-compliant approach allows design of the communication-
oriented part of the application on top of the OCCN Communication API.

Figure 18. Inheritance of classes and specialized ports.

Comments are introduced within each code block to illustrate important design issues.
•  “inout_pdu.h“ – Pdu definitions for all ports,

sc_port <MasterIf <……..> >

MasterPort<Pdu<…>,Pdu<…> >

MasterFrame

sc_port <SlaveIf <……..> >

SlavePort<Pdu<…>,Pdu<…> >

SlaveFrame
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•  “transmitter.h“ – interface definition of Transmitter module,
•  “transmitter.cc“ – implementation of Transmitter module,
•   “MasterFrame.h“ – interface definition of Transmitter frame adaptation layer,
•  “MasterFrame.c“ – implementation of Transmitter frame adaptation layer, and
•   “main.cc” – description of main.

4.2.1.1 The Pdu Definition

With respect to data type definition, we define the buffer and frame data structures using
the OCCN Pdu object. The buffer is an OCCN Pdu without header and a body of
BUFFER_SIZE number of characters. Mapping of the frame to an OCCN Pdu is shown in
Figure 19. For in-order transmission the sequence number can be represented with a
single bit. However, a progressive number is assigned to each frame, partly for clarity
reasons and for the possibility to support unordered transmissions in the future. Since
StdChannel is point-to-point, addr is actually useless, but could be used in a more
general setting. Moreover, a reserved number (ERROR_CODE) in ack indicates an error,
denoting among all non-acknowledgement conditions data corruption detected by EDC.

Figure 19.  I- and ACK-frame data structures and corresponding OCCN Pdu objects.
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#include <occn.h>
#define BUFFER_SIZE 256
#define ERROR_CODE  0xFFFFFFFF
typedef uint seq_num;
typedef uint EDC_type;

// I_HeaderType for the header of the Pdu I_FrameType
 struct I_frame_header {
  seq_num sequence;
  uint address, source_id;
  EDC_type EDC; };

// ACK_HeaderType for the header of the Pdu ACK_FrameType
 struct ACK_frame_header {
  seq_num ack;
  uint source_id; };

// I_FrameType PDU has a body size of 32 bits (unsigned int)
typedef Pdu<I_frame_header, N_uint32> I_FrameType;
// ACK_FrameType PDU has no body section (use dummy body of char)
typedef Pdu<ACK_frame_header, char> ACK_FrameType;
// The PDU for the buffer parameter of TransportLayer_send
typedef Pdu<char, BUFFER SIZE> BufferType;
CCN
inout_pdu.h
 SOFTWARE LICENSE: GNU GPL                                                         PAGE  49 OF  64
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To simplify the code, we assume that the data size of the StdChannel equals the frame
size, i.e. Pdu sent by the OCCN Communication API is directly the I-frame in the
transmitter to receiver direction and the ACK-frame in the opposite. The “inout_pdu.h”
code block provides the Pdu type definitions for inter-module communication. Notice the
definitions of I_FrameType and ACK_FrameType that are used throughout the example.

4.2.1.2 The Transmitter Module

The Transmitter module implements the SC_THREAD action_tx. A buffer filled with
random letters in [‘A’ ... ’Z’] is sent through the channel by calling the application API
TransportLayer_send function through the MasterFrame sap_tx access port. This
operation is repeated NB_SEQUENCES times. The Transmitter module interface described
in the code block “transmitter.h”  includes
•  the MasterFrame definition, which is the same as in the Receiver module; thus it is

obtained directly from “inout_pdu.h”.
•  the transmission layer name and interface definitions, defined in “MasterFrame.h”.
•  the thread name and action (action_tx) routine, and
•  other internal objects and variables, such as buffer.
#include <systemc.h>
#include <occn.h>
#include "inout_pdu.h"
#include "MasterFrame.h"
#define NB_SEQUENCES 15

class transmitter :  public sc_module {
  public:
    transmitter(sc_module_name name, sc_time time_out);
    MasterFrame sap_tx; // MasterFrame specialized port
    SC_HAS_PROCESS(transmitter);
  private:
    void action_tx();
    BufferType buffer_tx; };
CC
Transmitter.h
#include <stdlib.h>
#include "transmitter.h"
// Transmitter constructor
transmitter::transmitter(sc_module_name name, sc_time time_out)
            :sc_module(name), sap_tx(time_out), buffer_tx()
{SC_THREAD(action_tx);}

// Transmitter SC_THREAD process action_tx
void transmitter::action_tx() {
  uint addr = 0;
  Random rnd; // Random is an OCCN class for random generation
  do {
    for (int i=0; i < buffer_tx.sdu_size; i++)
       buffer_tx[i] = (char) (rnd.integer(26)+65);
    cout << sc_time_stamp() << ": body of buffer_tx #" << addr;
    cout << "transmitted with TL_send" << endl << buffer_tx;
    sap_tx.TransportLayer_send(addr*buffer_tx.sdu_size, buffer_tx);
    addr++;
  } while(addr < NB_SEQUENCES);

OCCN end sim(0,"SUCCESS"); }
Transmitter.cc
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The Transmitter module provides a transmission layer interface described in code blocks
“MasterFrame.h” and “MasterFrame.cc”. This layer defines a very simple
communication API. based on the TransportLayer_send function; its behavior can be
summarized into two main actions:
•  segmentation of the buffer into I-frames, with the relevant header construction and

insertion; this action exploits Pdu class operators.
•  sending the I-frame according to the ARQ protocol.
#include <systemc.h>
#include <occn.h>
#include "inout_pdu.h"

class MasterFrame : public MasterPort<I_FrameType, ACK_FrameType> {
  public:
   MasterFrame(sc_time t);
   ~MasterFrame();
   void TransportLayer_send(uint addr, BufferType& buffer);
  private:
   uint address_function(uint addr);
   EDC_type EDC_function_tx(I_FrameType frame);
   sc_time timeout; };
CC
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MasterFrame.h
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nclude "MasterFrame.h"

sterFrame::MasterFrame(sc_time t) : timeout(t){}
sterFrame::~MasterFrame() {}

id MasterFrame::TransportLayer_send(uint addr,
                                    BufferType& buffer_tx) {
I_FrameType& frame_tx = *(new I_FrameType);
ACK_FrameType& frame_ack_rx = *(new ACK_FrameType);
bool received_ack;
const seq_num total_frames = buffer_tx.sdu_size/frame_tx.sdu_size;
seq_num i = 0;
buffer_tx >> frame_tx; // Segmentation (Transport-Layer)
do {
  occn_hdr(frame_tx, sequence) = i; // frame header set up
  // Network-layer function determining the address of the packet
  occn_hdr(frame_tx, address) = address_function(addr);
  // Data-link Layer function which adds the Error Detection Code
  occn_hdr(frame_tx, EDC) = EDC_function_tx(frame_tx);
  occn_hdr(frame_tx, source_id) = 1;
  asend(&frame_tx); // MasterPort API: non-blocking send
  frame_ack_rx = *receive(timeout, received_ack);
  if (received_ack) {
    if (occn_hdr(frame_ack_rx, ack)==i) { // pos ack => next frame

   i++;
   buffer_tx >> frame_tx; }
reply(); }

 while (i<total_frames); }

non-implemented, dummy functions
nt MasterFrame::address_function(uint addr) {return addr; }
C_type MasterFrame::EDC_function_tx(I_FrameType frame) {return 1;}

MasterFrame.cc
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4.2.1.3 The Receiver Module

The code block “Receiver.h” describes the interface of the Receiver module.
“Receiver.cc” implements a SC_THREAD process, called action_rx, which reads the
buffer through the API TransportLayer_receive and prints it out. The channel is
accessed through the SlaveFrame sap_rx specialized port.

T
fu

Receiver.h

#include <systemc.h>
#include <occn.h>
#include "inout_pdu.h"
#include "SlaveFrame.h"

class receiver :  public sc_module {
public:
    receiver(sc_module_name name);
    ~receiver();
    SlaveFrame sap_rx;
    SC_HAS_PROCESS(receiver);
private:
     void action_rx();
     BufferType* buffer rx; };
Receiver.cc
#include <stdlib.h>
#include "receiver.h"

// Receiver constructor and destructor
receiver::receiver(sc_module_name name)
        : sc_module(name),
          sap_rx()
{ SC_THREAD(action_rx);
  buffer_rx = new BufferType; }

receiver::~receiver()
{delete buffer_rx;}

// Receiver SC_THREAD process action_rx
void receiver::action_rx() {
    uint count = 0;
    do {
        buffer_rx = sap_rx.TransportLayer_receive();
        // Report
        cout << sc_time_stamp() << " : body of buffer_rx #" <<count;
        cout << " received with TL_receive" << endl << *buffer_rx;
        count++;
    } while(1);
}
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he TransportLayer_receive API is a method of the SlaveFrame class; from a
nctional point of view it handles two main tasks:

•  the reception of a I-frame according to the described ARQ protocol;
•  the assembly of the valid frame payloads into the buffer.



OCCN USER MANUAL  – V1.0.1                                                               14 OCTOBER, 2003

O

The method that checks for errors by the EDC simply decides randomly on the
correctness of the frame.

4

F
•

#include <systemc.h>
#include <occn.h>
#include "inout_pdu.h"

class SlaveFrame : public SlavePort<ACK_FrameType,I_FrameType> {
public:
    SlaveFrame ();
    ~SlaveFrame ();
    BufferType* TransportLayer_receive();
private:
    bool EDC_function_rx(I_FrameType frame); };
CC

.2.1

inal
 in
SlaveFrame.h
#include "SlaveFrame.h"
SlaveFrame::SlaveFrame() {}
SlaveFrame::~SlaveFrame() {}

BufferType* SlaveFrame::TransportLayer_receive() {
    BufferType& buffer_rx = *(new BufferType);
    I_FrameType& frame_rx = *(new I_FrameType);
    ACK_FrameType& frame_ack_tx = *(new ACK_FrameType);
    const seq_num total_frames =
                  buffer_rx.sdu_size/frame_rx.sdu_size;
    Random rnd;
    seq_num sequence_expected = 0;
    do {
      frame_rx = *receive();      
      if (EDC_function_rx(frame_rx)){ // frame_rx is not corrupted

if (occn_hdr(frame_rx, sequence)==sequence_expected) {
  buffer_rx << frame_rx;
  sequence_expected++; }
occn_hdr(frame_ack_tx, ack) = occn_hdr(frame_rx, sequence);

      occn_hdr(frame_ack_tx,source_id)=occn_hdr(frame_rx,source_id);
      } else { // frame_rx is corrupted

occn_hdr(frame_ack_tx, ack) = ERROR_CODE; }
      reply();
      wait(rnd.integer(30),SC_NS); // random latency of slave
      send(&frame_ack_tx);
    } while (sequence_expected < total_frames);
    return &buffer_rx;
}

bool SlaveFrame::EDC_function_rx(I_FrameType frame) {// Error Model
  Random rnd;
  if (rnd.integer(1000)>995) return false; // Error detected
  else return true; } // No errors detected
SlaveFrame.cc
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.4 The Top Level main.cc

ly, the main.cc references to all modules, and as shown in the code block above, it
stantiates the simulator Clock and defines the timeout delay,
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•  instantiates the SystemC Receiver and Transmitter modules,
•  instantiates the StdChannel,
•  distributes the Clock to the Receiver and Transmitter modules,
•  connects the Receiver and Transmitter modules using a point-to-point channel (and in

more general situations a multipoint) channel, and
•  starts the simulator using the sc_start command.
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main.cc
#include <systemc.h>
#include <occn.h>
#include "inout_pdu.h"
#include "transmitter.h"
#include "receiver.h"

int main() {
  sc_clock clock1("clk",10,SC_NS);
  sc_time timeout_tx(40, SC_NS); // time out for the ARQ protocol
  transmitter my_master("Transmitter", timeout_tx);
  receiver my_slave("Receiver");

  StdChannel<I_FrameType, ACK_FrameType> channel("ch"); // Stdchannel
  channel.clk(clock1); // clock associated to StdChannel
  my_master.sap_tx(channel); // port bind
  my_slave.sap_rx(channel);  // port bind

  sc_start(-1);
  return -1;

}
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.2.2 OCCN Communication Refinement using STBus

his Section explains communication refinement, if the proprietary STBus NoC is used
stead of the generic OCCN StdChannel. The refinement is described after a brief

resentation of the STBus

.2.2.1 The StBus NoC

he ST Microelectronics STBus may be considered as a first generation implementation
f a NoC for system-on-chip applications, such as set-top-box, digital camera, MPEG
ecoder, and GPS. STBus consists of packet-based general-purpose transaction protocols,
terfaces, primitives and architecture specifications layered on top of a highly integrated

hysical communication infrastructure. STBus is a scalable interconnect that can cater for
ll attached modules in the same way. It also provides interoperability across different
endors. This ensures that the model designer is isolated from system issues, while
llowing the system designer to control and tune architecture- and implementation-
ecific parameters, such as topology, and arbitration logic for optimal performance.

hus, most STBus implementations are richly connected networks that are efficient in
ontrolling the delivery of bandwidth and latency. This sharply contrasts with the
onolithic structures common in many other on-chip interconnects.

TBus is the result of evolution of the interconnect developed for micro-controllers
edicated to consumer application, such as set top boxes, ATM networks, digital still
ameras and others. Interconnect design was based on the accumulation of ideas
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converging from different sources, such as the transputer (ST20), the Chameleon
program (ST40, ST50), MPEG video processing and VCI (Virtual Component Interface)
organization. Today STBus is not only a communication system characterized by
protocol, interfaces, transaction set, and IPs, but also a technology allowing to design and
implement communication networks for SoC. Thus, STBus supports a development
environment including tools for system level design, architectural exploration, silicon
design, physical implementation and verification.

There exist three types of STBus protocols, with different complexity and
implementation characteristics and various performance requirements.
•  Type1 is the simplest protocol. The protocol is intended for peripheral register access.

Th protocol acts as an RG protocol, without any pipelining. Simple load, and store
operations of several bytes are supported.

•  Type 2 includes pipelining features. It is equivalent to the “basic” RGV protocol. It
supports an operation code for ordered transactions. The number of request cells in a
packet is the same as the number of response cells.

•  Type 3 is an advanced protocol implementing split transactions for high bandwidth
requirements (high performance systems). It supports out of order execution. The size
of a response packet may be different than the size of a request packet. The interface
maps the STBus transaction set on a physical set of wires defined by this interface.

Figure 20. The StBus NoC, illustrating initiators and target components (shown as white boxes)

As shown in Figure 20, STBus NoC is built using several components, such as node,
register decoder, type converter, size converter. The node is the core component,
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responsible for the arbitration and routing of transactions. The arbitration is performed by
several components implementing various algorithms. A TLM cycle-accurate model for
STBus has been developed using OCCN. The model provides all OCCN benefits, such as
in simplicity, speed, and protocol in-lining. System architects are currently using this
model in order to define and validate new architectures, evaluate arbitration algorithms,
and discover trade-offs in power consumption, area, clock speed, bus type,
request/receive packet size, pipeling (asynchronous/synchronous scheduling, number of
stages), FIFO sizes, arbitration schemes (priority, least recently used), latency, and
aggregated throughput.

We next illustrate important concepts in communication refinement and design
exploration using the STBus model. Similar refinement or design exploration may be
applied to AMBA AHB or APB bus models. These models have also been developed
using OCCN. For further information regarding STBus and AMBA bus OCCN models
please refer to [15, 51, 52].

4.2.2.2 Communication refinement with STBus

Figure 21 illustrates communication refinement, if the proprietary STBus NoC, described
in Section 4.3.1, is used instead of the generic OCCN StdChannel.

Transmitter

Process
action_tx

Port
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Figure 21. Transport layer protocol with STBus refinement

Refinement of the transport layer data transfer case-study is based on the simplest
member of the STBus family. STBus Type 1 acts as an RG protocol, involves no
pipelining, supports basic load/store operations, and is targeted at modules with low
complexity, medium data rate system communication requirements.

Figure 22 shows the simple handshake interface of STBus Type 1 [51, 52]. This interface
supports a limited set of operations based on a packet containing one or more cells at the
interface. Each request cell contains various fields: operation type (opc), position of last
cell in the operation (eop), address of operation (add), data (data) for memory write, and
relevant byte enable signals (be). The request cell is transmitted to the target, which
acknowledges accepting the cell by asserting a handshake (r_req) and sending back a
response packet. This response contains a number of cells, with each cell containing data
(r_data) for read transactions, and optionally error information (r_opc) indicating that a
specific operation is not supported, or that access to an address location within this device
is not allowed. STBus uses r_opc information to diagnose various system errors.
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Figure 22. STBus Type 1 initiator and target interfaces

The TransportLayer_send and TransportLayer_receive API do not change in terms
of their semantics and interfaces, but the Adaptation Layer must implement the
functionality required to map the Application API to the STBus intrinsic signals and
protocol. Thus, within the Adaptation Layer, we provide an STBus-dedicated
communication API based on the MasterPort/SlavePort API. Due to space limitation, the
code for this refinement is not provided. However, we abstract some of the key ideas
used in the process.

According to Figure 22, the frame must be mapped to an STBus_request Pdu describing
the path from initiator (transmitter) to target (receiver), and an STBus_response Pdu
representing the opposite path. In particular,
•  the payload corresponding to STBus write data lines (data) is mapped to the body of

the STBus_request Pdu.
•  buffer segmentation and reassembly are implemented as in StdChannel, by exploiting

the >> and << operators of the OCCN Pdu object (the payload size is the same).
•  the destination address corresponds to the STBus addr signal (which is a part of the

STBus_request Pdu header), and
•  the extra bits for the EDC are implemented as extra lines of the write data path.

With Type 1 protocol, completion of the initiator send means that the target has received
the data. Thus, we avoid explicit implementation of the sequence, source_id (both
fields) and ack fields in Figure 22.

Furthermore, since STBus guarantees a transmission free of packet loss, normally no
timeout features are required. However, deep submicron effects may make the STBus a
noisy channel. Thus, we may extend the basic idea of a ARQ protocol, i.e. EDC with
retransmission of erroneous data, to a real on-chip bus scheme [4, 29]. In this case, the
r_opc signal, represented as a header field of the STBus_response Pdu, may an error
code to the transmitter (initiator, in STBus terminology). This code may be used to
determine if the same transaction must be repeated.

Since there is no direct access to the signal interface or the communication channel
characteristics, we do not need to modify Transmitter or Receiver application modules, or
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the relevant test benches. Thus, we achieve module and tester design reuse at any level of
abstraction without any rewriting and without riping up and re-routing communication
blocks. This methodology facilitates OCCA design exploration through efficient
hardware/software partitioning and testing the effect of various functions of bus
architectures. In addition, OCCN extends state-of-the-art in communication refinement
by presenting the user with a powerful, simple, flexible and compositional approach that
enables rapid IP design and system level reuse

4.2.3 High-Level System Performance Statistical Functions

OCCN methodology for collecting statistics from system components can be applied to
any modeling object. For advanced statistical data, which may include preprocessing, one
may also directly use the public OCCN statistical classes. In order to generate basic
statistics information appropriate enable_stat_ function calls must be made usually
from within the module constructor. For example, we show below the function call for
obtaining write throughput (read throughput is similar) statistics.
// Enable statistics collection in [0,50000] with number of samples = 1

enable_stat_throughput_read(0, 50000, 1, "Simulation Time",

                       "Average Throughput for Write Access", “buffer”);

Considering our transport layer data transfer case-study without taking into account
retransmissions, we measure the effective throughput in I-frame transfers in Mbytes/sec.
Assuming packet-loss transmission, and a receiver that provides an acknowledgment
after every clock cycle, i.e. a frame is transmitted every 2 cycles, the StdChannel can
transmit a payload of 4 bytes during every (10ns) clock cycle. Thus, the maximum
throughput is 200Mbytes/sec.

Figure 23. Performance results for transport layer protocol.

Figure 23 assumes a receiver with random response latency (not greater than 3 clock
cycles), and an unreliable connection.  In the left graph, an appropriate timeout is chosen
according to the receiver latency, while in the right graph, the chosen timeout is too short,
thus a high number of retransmissions occur. This obviously decreases the performance
of the adopted ARQ protocol. Observe how graph axes and title are composed from
enable_stat_throughput_read function parameters. Also notice that units and



OCCN USER MANUAL  – V1.0.1                                                               14 OCTOBER, 2003

OCCN SOFTWARE LICENSE: GNU GPL                                                         PAGE  59 OF  64

legends are always provided automatically. Legends list the object name (computed
automatically from the constructor) and time_window. Internal figure numbers are
always included in the corresponding (*.agr) Grace™ file names; this helps in organizing
multiple graphs when preparing a large document for desktop publishing.

Similarly, for obtaining delay statistics, we make the following function call:
enable_stat_delay(0,50000,"Arrival Time","Departure Time", “stat_box”);

Notice that delay statistics are only meaningful for objects which perform consecutive
write and read operations; these objects essentially serve as transit points: they first
accept information, and then, after a queuing delay, they propagate information. Thus, for
delay statistics, a read access should always occur before the matching write access!

4.2.4 Design Exploration using OCCN

In order to evaluate the vast number of complex architectural and technological
alternatives the architect is equipped with a highly-parameterized, user-friendly, and
flexible OCCN methodology. This design exploration methodology is used to construct
an initial architectural solution from system requirements, mapping inter-module
communications through appropriate bus configuration parameters. Subsequently, this
solution is refined through an iterative improvement strategy based on domain- or
application-specific performance evaluation based on analytical models and simulation.
The proposed solutions provide values for all system parameters, including configuration
options for increasingly sophisticated multiprocessing, multithreading, prefetching, and
cache hierarchy components.

Performance estimation is normally based on mathematical analysis models of system
reliability, performance, and resource contention, as well as stochastic traffic models and
actual benchmarks for common applications, e.g. commercial networking or multimedia.
Performance evaluation must always take into account future traffic requirements arising
from new applications, scaling of existing applications, or evolution of communication
networks. In our case, we have simulated our simple transport layer protocol model for
several million cycles with the STBus Type 1 channel on a Blade 1000 workstation. After
compiling all models with the highest optimization level, compiler switch –O3, we
observed a simulation efficiency of ~100Kcycles/sec; simulation efficiency metrics are
obtained by dividing the actual simulated cycles by CPU time. Furthermore, the
simulation speed on customary buses, such as AMBA AHB or STBus Type 1, is almost
independent of the number of initiators and targets, while for NoC, such as the STBus
NoC, it is increasingly sensitive to the number of initiators, targets and computing nodes.
This is due to the inherent complexity of the NoC architecture.

After extensive architecture exploration, ST Microelectronics exploits a reuse-oriented
design methodology for implementing a generic interconnect subsystem. The system-
level configuration parameters generated as a result of architectural exploration are
loaded onto the Synopsys tools coreBuilder and coreConsultant. These tools integrate a
preloaded library of configurable high-level (soft) IPs, such as the STBus interconnect; IP
integration is performed only once using coreBuilder. CoreConsultant uses a user-
friendly graphical interface to parameterize IPs, and automatically generate a gate-level
netlist, or a safely configured and connected RTL view (with the correct components and
parameters), together with the most appropriate synthesis strategy. Overall SoC design
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flow now proceeds normally with routing, placement, and optimization by interacting
with various tools, such as Physical Compiler, Chip Architect, and PrimeTime.

Architecture exploration using OCCN allows the designer to rapidly assemble,
synthesize, and verify a NoC through a methodology that uses pre-designed IP for each
bus in the system. This approach dramatically reduces time-to-market, since it eliminates
the need for long redesigns due to architecture optimization after RTL simulation.
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5. Conclusions and Extensions

Network on-chip is becoming a critical determinant of system-level metrics, such as
system performance, reliability, and power consumption. The development of SystemC
as a general-purpose programming language for system modeling and design enables the
application of C++ object-oriented technology for modeling complex MPSoC
architectures, involving thousands of general purpose or application-specific PEs, storage
elements, embedded hardware, analog front-end, and peripheral devices.

The OCCN project is aimed at developing new technology for the design of network on-
chip for next generation high-performance MPSoCs. The OCCN framework focuses on
modeling complex network on-chip by providing a flexible, state-of-the-art, object-
oriented C++-based methodology consisting of an open-source, GNU General Public
Licensed library, built on top of SystemC.  OCCN methodology is based on separating
computation from communication, and establishing communication layers, with each
layer translating transaction requests to lower-level communication protocols.
Furthermore, OCCN provides several important modeling features.
•  Object-oriented design concepts, fully exploiting advantages of this software

development paradigm.
•  Efficient system-level modeling at various levels of abstraction. For example, OCCN

allows modeling of reconfigurable communication systems, e.g. based on
reconfigurable FPGA. In these models, both the channel structure and binding change
during runtime.

•  Optimized design based on system modularity, refinement of communication
protocols, and IP reuse principles. Notice that even if we completely change the
internal data representation and implementation semantics of a particular system
module (or communication channel), while keeping a similar external interface, users
can continue to use the module in the same way.

•  Reduced model development time and improved simulation speed through powerful
C++ classes.

•  System-level debugging using a seamless approach, i.e. the core debugger is able to
send detailed requests to the model, e.g. dump memory, or insert breakpoint.

•  Plug-and-play integration and exchange of models with system-level toolssupporting
SystemC, such as System Studio(Synopsys), NC-Sim (Cadence), and Coware,
making SystemC model reuse a reality.

•  Efficient simulation using direct linking with standard, nonproprietary SystemC
versions.

•  Early design space exploration for defining the merits of new ideas in OCCA models,
including a generic, reusable, robust, and bug-free C++ statistical library for
exploring system-level performance modeling. In addition, we have discussed
statistical library extensions, including advanced monitoring features, such as
generation, processing, dissemination and presentation.

Low power consumption is one of the crucial factors determining the success of modern,
portable electronic systems. Reduction of chip overheating, which negatively affects
circuit reliability, are the main factors driving massive investments in power conscious
design solutions. New methodologies try to address power optimization from the early
stages of the system design, leveraging the degrees of freedom available during
architectural conception and hardware/software partitioning of the system. Thus,
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correlated power estimation is performed by using statistics on the bus resource’s usage,
e.g. by collecting data on the number and size of packets sent and received, and keeping
track of the average bus utilization rate. One may use this information together with the
bus topology to figure out the power and energy cost of the system, either in form of
analytic equations or as lookup tables. Power consumption may be modeled at the
Functional level, Transaction level (TLM), Bus Cycle Accurate level (BCA), or All
Cycle Accurate (ACA) level; ACA provides cycle- and pin-accurate level description of
all system modules. ST Microelectronics is currently developing a wide range of power
macro-modeling for STBus, and AMBA AHB and APB buses. These models would
eventually be hooked for SystemC simulation.

We also hope to develop new methodology and efficient algorithms for automatic design
exploration of high-performance network on-chip. Within this scope, we hope to focus on
system-level performance characterization and power estimation using statistical
(correlated) macros for NoC models, considering topology, data flow, and
communication protocol design. These models would eventually be hooked to the OCCN
framework for SystemC simulation data analysis, and visualization.

While OCCN focuses on NoC modeling, providing important modeling components and
appropriate design methodology, more tools are needed to achieve overall NoC design.
For example, interactive and off-line visualization techniques would enable detailed
performance modeling and analysis, by
•  developing advanced monitoring features, such as generation, processing,

dissemination and presentation,
•  providing asynchronous statistics classes with the necessary abstract data types to

support waves, concurrency map data structures and system snapshots, and
•  combining modeling metrics with platform performance indicators which focus on

monitoring system statistics, e.g. simulation speed, computation and communication
load. These metrics are especially helpful in improving simulation performance in
parallel and distributed platforms, e.g. through automatic data partitioning, or
dynamic load balancing.
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