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TOOLIP Focus

• Residential and home applications are becoming increasingly complex systems and
application

• Industry requires a high level of integration of various functions
• Integration of whole systems on a single chip

Manage complexity by      Objectives:
- Parametric and reusable IP cores      - Shorten design times cycles
- System-level modelling      - First time silicon success
- Verification techniques      - Reducing design complexity

- Design flow      - Ease simulation, verification and test
- IP Qualification      - Make „reuse“ a feasible reality
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TOOLIP Partners

Thomson multimedia

Thomson MM DTB
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MP-SoC architecture: AMBA based
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Or….STBus based
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STBus Interfaces
Interface Type Initiator Target

Type 1 : Peripheral
- Simple synchronous handshake
- Limited transaction set

ST20-C1
  Peripherals (UART,
  timer)
  On-chip SRAM ROM

Type 2 : Basic System
- Supports split, pipelined accesses

ST20-C2 core
customer ASICs   Flash EMI

  SDRAM EMI

Type 3 : Advanced System
- Supports split, pipelined accesses
- Supports out of order execution
- Shaped packets

ST40 / ST50 Core
multi-channel dma   PCI master

  DDR LMI
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STBus Building Blocks

�Node
�Performing arbitration and routing

�Buffer
�Performing retiming

�Size Converter
�Allowing the communication between two blocks having

different bus sizes
�Type Converter

�Allowing the communication between two blocks following
different STBus protocols
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From SoC to NoC

System on a chipSystem on a chip

Programmable computation
Hardwired interconnectivity
Partially distributed storage

Programmable computation
Hardwired interconnectivity
Partially distributed storage

Network on a chipNetwork on a chip

Programmable computation
Programmable interconnectivity
Fully distributed storage

Programmable computation
Programmable interconnectivity
Fully distributed storage

Micro-network
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Some definitions
• NoC is a future view as a micro-network of

components [Benini and De-Micheli]
• NoC is  a parallel computation platform with a

task/process level of parallelism; suitable only for
high-volume products [J.P Soininen and H Heusala]

• NoC is a set of computation node connected via
sophisticated on-chip communication network [A.A
Jerraya et alt.]
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NoC

 SE

 PE  PE PE

 I/O On-Chip
Communication

Architecture

PE=Processing Element
I/O=input/output
SE=Storage Element
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Communication Centric Methodology
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OCCN : methodology for
communication modeling

• Generic communication-centric design
methodology based on C++ and SystemC

• OCCN addresses
– high level performance modeling issues such as

speed, latency and power estimation
– modeling productivity
– model portability
– simulation speed-up

• OCCN is an on-going research activity
between several R&D organizations

On-Chip
communication

architecture

 P
E

 PE
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E
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OCCN

on-chip communication architecture
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OCCN Conceptual Model

OCCN Conceptual Model
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Adaptation Layer
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 OCCN aims at IC modeling, providing a real object-
oriented methodology based on a C++ library and
a fully documented design flow based on SystemC
2.0

SystemC 2.0 Scheduler

SystemC 2.0 
Library

OCCN  Library 

User Model

What is OCCN ?



19

OCCN core: the PDU
• Protocol = syntax + semantics

– syntax = PDU
– semantics = how the PDU are

exchanged
• The PDUs exchanged have two

parts:
– a header also known as the Protocol

Control Information (PCI)
– a payload also known as a Service

Data Unit (SDU)
•  Several operators are defined for

handling protocol operations
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PDU Examples

Pdu<char> p1;

8 bits

DataP T

Struct DSLINK_token {unsigned int P:1; unsigned int T:1};

Pdu<DSLINK_token,char> p2;

occn_hdr(pk1,P)=1;

pk1=‘a’;
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Generic representation of a connection
• Any connection of a module to the communication node (network) is based

on 2 sets of PDU
– Pdu<uint32,PCIRequest>
– Pdu<uint32,PCIResponse>

• The PCI sets are described thanks to C/C++ structures. They are defined
according to the bus specification and thus are specific to a model. For
instance it will be different for an AHB model and an STBUS model

Struct
{
  bool Request;
  unsigned char Opcode;
  bool Lock;
}
PCIControl

 IP
(module)

OCCN
Response

response

PDU

RequestlPDU

request
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OCCN: communication

• SystemC based
• Simple Message

Passing API
Channel

Module 1

port a

process

port b Receiver
process

Channel

Module 2

Interfaces

 Transmit

•      Pdu<…>* send(Pdu<…>* p, sc_time& time_out=-1);
•          int trysend(Pdu<…>* p);

•          Pdu<…>* receive(int ack_time, sc_time& time_out=-1);

•          Pdu<…>* receive(sc_time& ack_time, sc_time& time_out=-1);

•          Pdu<…>* receive(sc_time& time_out=-1);

•          void reply(Pdu<…>* p=0);
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OCCN core : API semantic

  reply( )

Pdu = receive( )

send (Pdu) 
Or  trysend(Pdu)

Time 
Module A

Time 
Module B

Send( ) wake up

trysend end
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OCCN core : protocol state machine
centralized

• allows synchronous and asynchronous
communication modeling

• For synchronous com, PEs don’t need to be
connected to the clock signal

Clock

 PE

 SE
send

receive



25

Performance measurement with Grace

• XY graph, XY charts, pie charts,
polar, and fixed graphs.

• User-defined scaling, ticks, labels,
symbols, line styles, fonts, colors.

• Merging, validation, cumulative
average, curve fitting, regression,
filtering, DFT/FFT, cross/auto-
correlation, sorting, interpolation,
integration, differentiation...

• Internal language, and dynamic
module loading (C, Fortran, etc).

• Hardcopy support with PS, PDF,
GIF and PNM formats.
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OCCN framework keypoints
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MP SoC architecure
main()

{

sc_clock my_clock(10, SC_NS);
PE pe1, pe2;
SE se;
NoC occa();

occa.clk(my_clock);

pe1.port(occa);

pe2.port(occa);

se.port(occa);

occa.set_address_range(&se1.port,0x100,0x500);

occa.set_priority(&pe1.port, 2);

occa.set_priority(&pe2.port, 5);

sc_start(-1);

}

PE1

NoC

PE2

 Target
0x100-0x500
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OCCN: PE code example
#include “producer.h” 
producer::producer(sc_module_name name) : sc_module(name) 
{SC_THREAD(read);} 
 

void producer::read() { 
  char c; 
  Pdu<char>* msg; 
  while (cin.get(c)) { 
       msg = new Pdu<char>;  

  

 
       

*msg = c; 
       // producer sends c

       out.send(msg); 

 
} 

 
} 

// after the send the msg is not usable
 

 

Protocol inlining: 
protocol is automatic generated
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OCCN
On-Chip Communication Architecture

OCCN
AMBA AHB

Case Study: NoC Platform

MemoryMailBox
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Some preliminary numbers

• We are able to boot linux
– on a 450Mhz machine
– 7 millions of  bundles
– Without cache,bus and memory waiting times, we got

3 minutes
– Without cache and using TLM CA bus, we got 10

minutes
• Expectation on a linux machine 3 minutes
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Conclusion 1/2
•  OCCN

– based on SystemC methodology
– open & flexible API
– simulation speed-up
– reusability
– productivity
– communication architecure exploration

• Similar work: Gigascale Silicon Research Center
(GSRC) effort Princeton University: MESCAL Project
Modern Embedded Systems Compilers Architectures and

Languages
Princeton and UC Berkeley
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Conclusion 2/2

• Research Activity funded in Medea
• Public part -> http://occn.sourceforge.net

Univ. of Bologna

Univ. of Ancona

Univ. of Roma
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Thank You and …

Contributing to OCCN


