
1

A Methodology for NoC

AST Grenoble
Marcello Coppola

OCCN
On-Chip Communication Architecture

OccNOccN

2

Outline

• Toolip overview
• SoC today
• NoC
• OCCN
• Test study
• Conclusion

3

TOOLIP Focus

• Residential and home applications are becoming increasingly complex systems and
application

• Industry requires a high level of integration of various functions
• Integration of whole systems on a single chip

Manage complexity by Objectives:
- Parametric and reusable IP cores - Shorten design times cycles
- System-level modelling - First time silicon success
- Verification techniques - Reducing design complexity

- Design flow - Ease simulation, verification and test
- IP Qualification - Make „reuse“ a feasible reality

4

TOOLIP Partners

Thomson multimedia

Thomson MM DTB

5

MP-SoC architecture: AMBA based

GSM CYPHER

APB Bridge

RF I/f

TDMA Mgt

UARTs

PLL - Oscillator
GPIOs

APB Bridge

Camera Display
Flash/ROM

SRAM SDRAM

ST120 tightly coupled peripherals Shared peripherals ARM9 peripherals

DMA

ST120 Timer

ST120 CTRL

ST120 ITC

ST120 DMA

ADC

SIM I/f

MMC I/f

SSPs

I2Cs

I2S/PCM

X
SRAM

Y
SRAM

DMC

ST120
CORE

PMC

I
Cache

I
SRAM

S S S S

SDRAM
CTRL

S S

EMI

S M

LCD
CTRL

Clock Controller

RTC

Watchdog

Timers

ARM ITCAUDIO I/f

B
us

 S
w

itc
h

DMA i/f

APB i/f

AHB-M

AHB-S

AHB-M

S S
MBX

DPRAM

D
SRAM

D
Cache

ARM926EJ-S
CORE
MMU

I
SRAM

I
Cache

S M

MPEG4
CODEC

S S

ROM/
SRAM

S S S S
EDRAMC

EDRAM

S

ROM/
SRAM

ROM/
SRAM

GPRS CYPHER

USB

GSM TIME

WCDMA MODEM

USIM I/f

M

Comunication Network
M

Display AHB

Video AHB

ARM9 AHB

ST120 AHB

6

Or….STBus based

MEM

REG S

S TBus
N bits

S TB us
P bi ts

N ode Y

Node Z
P-N
Conv

N-P
Conv

S TBus
N bit s

S TBus
P bits

P B its

N Bits

S TBus
N bi ts

ST Bus
N bits

S TBus
P bitsInitiator

S TBus
P bitsInitiator

S TBus
P bitsInitiator

S TBus
P bitsInitiator

P bits

P bits

P bits

P bits

S TB us
N bitsInitiator

S TBus
N bitsInitiator

N bits

N bits

Type 2

Type 2

Type 2

Type 2

Type 2

Type 2

Type 2

Type 2

Type 2

Type 1

Type 2

Type 2

Type 1

S TBus
N bi ts Type 2/

Conv

ST Bus
P bit s

MEM
Type 2

7

STBus Interfaces
Interface Type Initiator Target

Type 1 : Peripheral
- Simple synchronous handshake
- Limited transaction set

ST20-C1
 Peripherals (UART,
 timer)
 On-chip SRAM ROM

Type 2 : Basic System
- Supports split, pipelined accesses

ST20-C2 core
customer ASICs Flash EMI

 SDRAM EMI

Type 3 : Advanced System
- Supports split, pipelined accesses
- Supports out of order execution
- Shaped packets

ST40 / ST50 Core
multi-channel dma PCI master

 DDR LMI

8

STBus Building Blocks

�Node
�Performing arbitration and routing

�Buffer
�Performing retiming

�Size Converter
�Allowing the communication between two blocks having

different bus sizes
�Type Converter

�Allowing the communication between two blocks following
different STBus protocols

9

From SoC to NoC

System on a chipSystem on a chip

Programmable computation
Hardwired interconnectivity
Partially distributed storage

Programmable computation
Hardwired interconnectivity
Partially distributed storage

Network on a chipNetwork on a chip

Programmable computation
Programmable interconnectivity
Fully distributed storage

Programmable computation
Programmable interconnectivity
Fully distributed storage

Micro-network

10

Some definitions
• NoC is a future view as a micro-network of

components [Benini and De-Micheli]
• NoC is a parallel computation platform with a

task/process level of parallelism; suitable only for
high-volume products [J.P Soininen and H Heusala]

• NoC is a set of computation node connected via
sophisticated on-chip communication network [A.A
Jerraya et alt.]

11

NoC

 SE

 PE PE PE

 I/O On-Chip
Communication

Architecture

PE=Processing Element
I/O=input/output
SE=Storage Element

12

PE,I/O,SE

Memory Controller

I/O

PE

SE

Motor control
ASIC

PWM

Timer

A/D

3-phase
controller

13

Communication Centric Methodology

14

OCCN : methodology for
communication modeling

• Generic communication-centric design
methodology based on C++ and SystemC

• OCCN addresses
– high level performance modeling issues such as

speed, latency and power estimation
– modeling productivity
– model portability
– simulation speed-up

• OCCN is an on-going research activity
between several R&D organizations

On-Chip
communication

architecture

 P
E

 PE

 P
E

 P
E

15

I/O
I/O
I/O

CORE

RAM

ROM

ASIC

SOC

M
od

el
in

g

Im
pl

em
en

ta
tio

n

Compromise: Multi-levels Validation

Cycle

RTL

Transaction

Functional

Test-bench

Higher Abstraction layer implies shorter
Iteration Cycles and less Lost Revenue

Source: Integrated Communications Design May, 2001

C/C++

Gate
Assembler

RTOS

16

OCCN

on-chip communication architecture

 PE PE

 SE I/O

OCCN

STBUS

OCCA

17

OCCN Conceptual Model

OCCN Conceptual Model

Application Layer

Adaptation Layer

NoC Communication Layer

Application API

Communication API

Sw Adaptation

Hw Adaptation

18

 OCCN aims at IC modeling, providing a real object-
oriented methodology based on a C++ library and
a fully documented design flow based on SystemC
2.0

SystemC 2.0 Scheduler

SystemC 2.0
Library

OCCN Library

User Model

What is OCCN ?

19

OCCN core: the PDU
• Protocol = syntax + semantics

– syntax = PDU
– semantics = how the PDU are

exchanged
• The PDUs exchanged have two

parts:
– a header also known as the Protocol

Control Information (PCI)
– a payload also known as a Service

Data Unit (SDU)
• Several operators are defined for

handling protocol operations

20

PDU Examples

Pdu<char> p1;

8 bits

DataP T

Struct DSLINK_token {unsigned int P:1; unsigned int T:1};

Pdu<DSLINK_token,char> p2;

occn_hdr(pk1,P)=1;

pk1=‘a’;

21

Generic representation of a connection
• Any connection of a module to the communication node (network) is based

on 2 sets of PDU
– Pdu<uint32,PCIRequest>
– Pdu<uint32,PCIResponse>

• The PCI sets are described thanks to C/C++ structures. They are defined
according to the bus specification and thus are specific to a model. For
instance it will be different for an AHB model and an STBUS model

Struct
{
 bool Request;
 unsigned char Opcode;
 bool Lock;
}
PCIControl

 IP
(module)

OCCN
Response

response

PDU

RequestlPDU

request

22

OCCN: communication

• SystemC based
• Simple Message

Passing API
Channel

Module 1

port a

process

port b Receiver
process

Channel

Module 2

Interfaces

 Transmit

• Pdu<…>* send(Pdu<…>* p, sc_time& time_out=-1);
• int trysend(Pdu<…>* p);

• Pdu<…>* receive(int ack_time, sc_time& time_out=-1);

• Pdu<…>* receive(sc_time& ack_time, sc_time& time_out=-1);

• Pdu<…>* receive(sc_time& time_out=-1);

• void reply(Pdu<…>* p=0);

23

OCCN core : API semantic

 reply()

Pdu = receive()

send (Pdu)
Or trysend(Pdu)

Time
Module A

Time
Module B

Send() wake up

trysend end

24

OCCN core : protocol state machine
centralized

• allows synchronous and asynchronous
communication modeling

• For synchronous com, PEs don’t need to be
connected to the clock signal

Clock

 PE

 SE
send

receive

25

Performance measurement with Grace

• XY graph, XY charts, pie charts,
polar, and fixed graphs.

• User-defined scaling, ticks, labels,
symbols, line styles, fonts, colors.

• Merging, validation, cumulative
average, curve fitting, regression,
filtering, DFT/FFT, cross/auto-
correlation, sorting, interpolation,
integration, differentiation...

• Internal language, and dynamic
module loading (C, Fortran, etc).

• Hardcopy support with PS, PDF,
GIF and PNM formats.

26

OCCN framework keypoints

 PE
PDU

request

PDU

response

 PE

Communication

Protocol state

machine

Message
passing
oriented

communication

Optimized
physical
transfer

Synchronous or
asynchronous

communication
with no simulation

overhead Dynamic
number of
bound PE

Protocol state
machine

centralized

System
performance

metrics

Generic
structure for

communication
node

27

MP SoC architecure
main()

{

sc_clock my_clock(10, SC_NS);
PE pe1, pe2;
SE se;
NoC occa();

occa.clk(my_clock);

pe1.port(occa);

pe2.port(occa);

se.port(occa);

occa.set_address_range(&se1.port,0x100,0x500);

occa.set_priority(&pe1.port, 2);

occa.set_priority(&pe2.port, 5);

sc_start(-1);

}

PE1

NoC

PE2

 Target
0x100-0x500

28

OCCN: PE code example
#include “producer.h”
producer::producer(sc_module_name name) : sc_module(name)
{SC_THREAD(read);}

void producer::read() {
 char c;
 Pdu<char>* msg;
 while (cin.get(c)) {
 msg = new Pdu<char>;

*msg = c;
 // producer sends c

 out.send(msg);

}

}

// after the send the msg is not usable

Protocol inlining:
protocol is automatic generated

29

OCCN
On-Chip Communication Architecture

OCCN
AMBA AHB

Case Study: NoC Platform

MemoryMailBox

30

Some preliminary numbers

• We are able to boot linux
– on a 450Mhz machine
– 7 millions of bundles
– Without cache,bus and memory waiting times, we got

3 minutes
– Without cache and using TLM CA bus, we got 10

minutes
• Expectation on a linux machine 3 minutes

31

Conclusion 1/2
• OCCN

– based on SystemC methodology
– open & flexible API
– simulation speed-up
– reusability
– productivity
– communication architecure exploration

• Similar work: Gigascale Silicon Research Center
(GSRC) effort Princeton University: MESCAL Project
Modern Embedded Systems Compilers Architectures and

Languages
Princeton and UC Berkeley

32

Conclusion 2/2

• Research Activity funded in Medea
• Public part -> http://occn.sourceforge.net

Univ. of Bologna

Univ. of Ancona

Univ. of Roma

33

Thank You and …

Contributing to OCCN

